Suchergebnisse - Fractional-order backpropagation learning algorithm

  1. 1

    A-LugSeg: Automatic and explainability-guided multi-site lung detection in chest X-ray images von Peng, Tao, Gu, Yidong, Ye, Zhenyu, Cheng, Xiuxiu, Wang, Jing

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 15.07.2022
    Veröffentlicht in Expert systems with applications (15.07.2022)
    “… •An improved machine learning model is proposed to express a mathematical model.•The explainability-guided mathematical model is used to denote lung contour …”
    Volltext
    Journal Article
  2. 2

    Modeling and Control of Permanent Magnet Synchronous Motor Based Electric Vehicle von G., Rajesh, Sebasthirani, K.

    ISSN: 1687-8132, 1687-8140
    Veröffentlicht: London, England SAGE Publications 01.04.2025
    Veröffentlicht in Advances in mechanical engineering (01.04.2025)
    “… ) controllers, leveraging Genetic Algorithm (GA) and Hybrid Reinforcement Genetic Algorithm-Recursive Backpropagation Learning (GA-RBL …”
    Volltext
    Journal Article
  3. 3

    Mechanical Property Prediction of Wood Using a Backpropagation Neural Network Optimized by Adaptive Fractional-Order Particle Swarm Algorithm von Huang, Jiahui, Kuang, Zhufang

    ISSN: 1999-4907, 1999-4907
    Veröffentlicht: Basel MDPI AG 01.08.2025
    Veröffentlicht in Forests (01.08.2025)
    “… ) with adaptive fractional-order particle swarm optimization (AFPSO) and Liang–Kleeman (LK) information flow theory …”
    Volltext
    Journal Article
  4. 4

    Fractional-order gradient descent learning of BP neural networks with Caputo derivative von Wang, Jian, Wen, Yanqing, Gou, Yida, Ye, Zhenyun, Chen, Hua

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.05.2017
    Veröffentlicht in Neural networks (01.05.2017)
    “… The monotonicity and weak (strong) convergence of the proposed approach are proved in detail. Two simulations have been implemented to illustrate the performance of presented fractional-order BP algorithm on three small datasets and one large dataset …”
    Volltext
    Journal Article
  5. 5

    Convergence Analysis of Novel Fractional-Order Backpropagation Neural Networks With Regularization Terms von Ma, Mingjie, Yang, Jianhui

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Veröffentlicht: United States IEEE 01.05.2024
    Veröffentlicht in IEEE transactions on cybernetics (01.05.2024)
    “… Fractional-order derivatives have the potential to improve the performance of backpropagation (BP) neural networks …”
    Volltext
    Journal Article
  6. 6

    Physics-Informed Fractional-Order Recurrent Neural Network for Fast Battery Degradation with Vehicle Charging Snippets von Wang, Yanan, Wei, Min, Dai, Feng, Zou, Daijiang, Lu, Chen, Han, Xuebing, Chen, Yangquan, Ji, Changwei

    ISSN: 2504-3110, 2504-3110
    Veröffentlicht: Basel MDPI AG 01.02.2025
    Veröffentlicht in Fractal and fractional (01.02.2025)
    “… In this paper, we propose a physics-informed recurrent neural network (PIRNN) with a fractional-order gradient for fast …”
    Volltext
    Journal Article
  7. 7

    Physics-Informed Recurrent Neural Network With Fractional-Order Gradients for State-of-Charge Estimation of Lithium-Ion Battery von Wang, Yanan, Han, Xuebing, Guo, Dongxu, Lu, Languang, Chen, Yangquan, Ouyang, Minggao

    ISSN: 2469-7281, 2469-729X
    Veröffentlicht: Piscataway IEEE 2022
    “… This paper introduces fractional-order gradients for RNN to improve its backpropagation process, so that network updates weights instructed by the fractional-order characteristics of LIB …”
    Volltext
    Journal Article
  8. 8

    Fractional-order gradient approach for optimizing neural networks: A theoretical and empirical analysis von Harjule, Priyanka, Sharma, Rinki, Kumar, Rajesh

    ISSN: 0960-0779
    Veröffentlicht: Elsevier Ltd 01.03.2025
    Veröffentlicht in Chaos, solitons and fractals (01.03.2025)
    “… This article proposes a modified fractional gradient descent algorithm to enhance the learning capabilities of neural networks, comprising the benefits of a metaheuristic optimizer …”
    Volltext
    Journal Article
  9. 9

    Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge von Wang, Yanan, Han, Xuebing, Lu, Languang, Chen, Yangquan, Ouyang, Minggao

    ISSN: 2504-3110, 2504-3110
    Veröffentlicht: Basel MDPI AG 01.11.2022
    Veröffentlicht in Fractal and fractional (01.11.2022)
    “… For LIB state estimation, this work proposes a fractional-order recurrent neural network (FORNN …”
    Volltext
    Journal Article
  10. 10

    Comparative study of integer-order and fractional-order artificial neural networks: Application for mathematical function generation von Joshi, Manisha Premkumar, Bhosale, Savita, Vyawahare, Vishwesh A.

    ISSN: 2772-6711, 2772-6711
    Veröffentlicht: Elsevier Ltd 01.06.2024
    Veröffentlicht in e-Prime (01.06.2024)
    “… : Perceptron employs a fractional derivative of the activation function and the steepest gradient-based learning algorithm …”
    Volltext
    Journal Article
  11. 11

    Improved fractional-order gradient descent method based on multilayer perceptron von Zhou, Xiaojun, Zhao, Chunna, Huang, Yaqun, Zhou, Chengli, Ye, Junjie

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.03.2025
    Veröffentlicht in Neural networks (01.03.2025)
    “… Moreover, the implementation of FOGD in the hidden layers serves as a necessary foundation for establishing a family of fractional-order deep learning optimizers, facilitating the widespread …”
    Volltext
    Journal Article
  12. 12

    Numerical Simulation and Computational Methods in Engineering and Sciences

    ISBN: 9783725809554, 3725809569, 3725809550, 9783725809561
    Veröffentlicht: MDPI - Multidisciplinary Digital Publishing Institute 2024
    “… This Special Issue compiles cutting-edge research on mathematical simulation and computational techniques, emphasizing innovative algorithms and their cross-field applications …”
    Volltext
    E-Book
  13. 13

    Fractional Order Backpropagation Neural Network for Battery Capacity Estimation with Realistic Vehicle Data von Wang, Yanan, Han, Xuebing, Dai, Feng, Li, Jie, Zou, Daijiang, Lu, Languang, Chen, Yangquan, Ouyang, Minggao

    Veröffentlicht: IEEE 28.11.2022
    “… On the basis of fractional-order calculus, this paper proposes a fractional-order backpropagation neural network (BPNN …”
    Volltext
    Tagungsbericht
  14. 14

    Accurate prediction of protein–ATP binding sites based on a protein pretrained large language model and a fractional-order convolutional neural network von Guo, Mengyao, Tu, Yuhang, Yu, Jiali, Wang, Yishu

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 25.11.2025
    Veröffentlicht in Scientific reports (25.11.2025)
    “… However, current research methods face numerous challenges, such as the need for various algorithms to extract multilevel features and then integrate them into one deep learning model …”
    Volltext
    Journal Article
  15. 15

    Estimation of chlorophyll content of Cinnamomum camphora leaves based on hyperspectral and fractional order differentiation von Yang, Baocheng, Zhang, Haina, Lu, Xianghui, Zhang, Yue, Wan, Haolong, Luo, Xin, Zhang, Jie

    ISSN: 0143-1161, 1366-5901, 1366-5901
    Veröffentlicht: London Taylor & Francis 02.08.2024
    Veröffentlicht in International journal of remote sensing (02.08.2024)
    “… Hyperspectral remote sensing combined with data preprocessing techniques and machine learning algorithms is a new way to efficiently estimate plant SPAD …”
    Volltext
    Journal Article
  16. 16

    Fractional-order differential evolution for training dendritic neuron model von Su, Kunqi, Jin, Ting, Gao, Jinrui

    ISSN: 1573-0484, 0920-8542, 1573-0484
    Veröffentlicht: New York Springer Nature B.V 08.11.2025
    Veröffentlicht in The Journal of supercomputing (08.11.2025)
    “… and the differential evolution algorithm to train DNM, referred to as fractional-order differential evolution (FODE) algorithm …”
    Volltext
    Journal Article
  17. 17

    Design of an Online Adaptive FractionalOrder Proportional‐Integral‐Derivative Controller to Reduce the Seismic Response of the 20‐Story Benchmark Building Equipped with an Active Control System von Jafarzadeh, Ommegolsoum, Mousavi Ghasemi, Seyyed Arash, Zahrai, Seyed Mehdi, Sabetahd, Rasoul, Mohammadzadeh, Ardashir, Vafaei Poursorkhabi, Ramin

    ISSN: 0884-8173, 1098-111X
    Veröffentlicht: New York John Wiley & Sons, Inc 2024
    “… Utilizing the backpropagation algorithm in training a multilayer perceptron neural network is deemed effective in identifying the structural system and estimating the plant …”
    Volltext
    Journal Article
  18. 18

    Inversion of Water Quality Parameters from UAV Hyperspectral Data Based on Intelligent Algorithm Optimized Backpropagation Neural Networks of a Small Rural River von Wang, Manqi, Zhou, Caili, Shi, Jiaqi, Lin, Fei, Li, Yucheng, Hu, Yimin, Zhang, Xuesheng

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.01.2025
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.01.2025)
    “… Firstly, the spectral data were preprocessed using fractional order derivation (FOD), standard normal variate (SNV …”
    Volltext
    Journal Article
  19. 19

    Design of stochastic backpropagative autoregressive exogenous neuroarchitectures for predictive analysis of fractional-order nonlinear Rabinovich–Fabrikant chaotic attractors von Hassan, Shahzaib Ahmed, Raja, Muhammad Junaid Ali Asif, Sherazi, Syed Zoraiz Ali, Chang, Chuan-Yu, Shu, Chi-Min, Kiani, Adiqa Kausar, Khan, Zeshan Aslam, Shoaib, Muhammad, Raja, Muhammad Asif Zahoor

    ISSN: 0924-090X, 1573-269X
    Veröffentlicht: Dordrecht Springer Nature B.V 01.12.2025
    Veröffentlicht in Nonlinear dynamics (01.12.2025)
    “… sensitive dependence on initial conditions within multifaceted physical contexts. In this paper, we present a fractional-order Rabinovich–Fabrikant (FO–RF …”
    Volltext
    Journal Article
  20. 20

    Physics-Informed Recurrent Neural Networks with Fractional-Order Constraints for the State Estimation of Lithium-Ion Batteries von Wang, Yanan, Han, Xuebing, Guo, Dongxu, Lu, Languang, Chen, Yangquan, Ouyang, Minggao

    ISSN: 2313-0105, 2313-0105
    Veröffentlicht: Basel MDPI AG 01.10.2022
    Veröffentlicht in Batteries (Basel) (01.10.2022)
    “… Rather than using complex partial differential equations and the complicated parameter tuning of a model-based method, a machine learning algorithm provides a new paradigm and has been …”
    Volltext
    Journal Article