Suchergebnisse - Forecasting algorithm comparison

  1. 1

    Visualising forecasting algorithm performance using time series instance spaces von Kang, Yanfei, Hyndman, Rob J., Smith-Miles, Kate

    ISSN: 0169-2070, 1872-8200
    Veröffentlicht: Elsevier B.V 01.04.2017
    Veröffentlicht in International journal of forecasting (01.04.2017)
    “… It is common practice to evaluate the strength of forecasting methods using collections of well-studied time series datasets, such as the M3 data …”
    Volltext
    Journal Article
  2. 2

    Analysis and Comparison of Forecasting Algorithms for Telecom Customer Churn von Jiao, Gui’e, Xu, Hong

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.04.2021
    Veröffentlicht in Journal of physics. Conference series (01.04.2021)
    “… The integrated algorithm is a highly flexible data analysis and prediction algorithm …”
    Volltext
    Journal Article
  3. 3

    Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches von Bouktif, Salah, Fiaz, Ali, Ouni, Ali, Serhani, Mohamed

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 2018
    Veröffentlicht in Energies (Basel) (2018)
    “… Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production …”
    Volltext
    Journal Article
  4. 4

    A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings von Alawadi, Sadi, Mera, David, Fernández-Delgado, Manuel, Alkhabbas, Fahed, Olsson, Carl Magnus, Davidsson, Paul

    ISSN: 1868-3967, 1868-3975, 1868-3975
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
    Veröffentlicht in Energy systems (Berlin. Periodical) (01.08.2022)
    “… The international community has largely recognized that the Earth’s climate is changing. Mitigating its global effects requires international actions. The …”
    Volltext
    Journal Article
  5. 5

    Comparison of algorithms for forecasting effective thicknesses: Case study of a field of the Krasnoleninsky oil and gas area von Ilyas R. Gelvanov, Vladislav I. Kuznetsov

    ISSN: 2687-0312
    Veröffentlicht: Russian Academy of Sciences, Oil and Gas Research Institute 25.06.2025
    Veröffentlicht in Aktualʹnye problemy nefti i gaza (25.06.2025)
    “… Background. Currently, when solving the tasks of exploration of territories, the possibility of using the 3D seismic survey method and modern interpretation of …”
    Volltext
    Journal Article
  6. 6

    Comparison and Explanation of Forecasting Algorithms for Energy Time Series von Zhang, Yuyi, Ma, Ruimin, Liu, Jing, Liu, Xiuxiu, Petrosian, Ovanes, Krinkin, Kirill

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.11.2021
    Veröffentlicht in Mathematics (Basel) (01.11.2021)
    “… In this work, energy time series forecasting competitions from the Schneider Company, the Kaggle Online platform, and the American society ASHRAE were considered …”
    Volltext
    Journal Article
  7. 7

    A Performance Comparison of Machine Learning Algorithms for Load Forecasting in Smart Grid von Alquthami, Thamer, Zulfiqar, Muhammad, Kamran, Muhammad, Milyani, Ahmad H., Rasheed, Muhammad Babar

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2022
    Veröffentlicht in IEEE access (2022)
    “… Therefore, precise energy demand estimation and short and/or long-term forecasting results with higher accuracy are required to develop the optimization and control mechanism …”
    Volltext
    Journal Article
  8. 8

    Comparison of Time Series Methods and Machine Learning Algorithms for Forecasting Taiwan Blood Services Foundation’s Blood Supply von Shih, Han, Rajendran, Suchithra

    ISSN: 2040-2295, 2040-2309, 2040-2309
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 2019
    Veröffentlicht in Journal of healthcare engineering (2019)
    “… This study aims to efficiently forecast the supply of blood components at blood centers. Methods. Two different types of forecasting techniques, time series and machine …”
    Volltext
    Journal Article
  9. 9

    Comparison of different optimized machine learning algorithms for daily river flow forecasting von Samui, Pijush, Yesilyurt, Sefa Nur, Dalkilic, Huseyin Yildirim, Yaseen, Zaher Mundher, Roy, Sanjiban Sekhar, Kumar, Sanjay

    ISSN: 1865-0473, 1865-0481
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
    Veröffentlicht in Earth science informatics (01.03.2023)
    “… The ultimate aim of this research is to establish high performance forecasting model. Therefore, this study conducts river flow modeling by using the daily data attained from a gauge station situated in the Euphrates Basin. For this purpose …”
    Volltext
    Journal Article
  10. 10

    Neural network earnings per share forecasting models: A comparison of backward propagation and the genetic algorithm von Cao, Qing, Parry, Mark E.

    ISSN: 0167-9236, 1873-5797
    Veröffentlicht: Amsterdam Elsevier B.V 01.04.2009
    Veröffentlicht in Decision Support Systems (01.04.2009)
    “… Zhang, Cao, and Schniederjans [W. Zhang, Q. Cao, M. Schniederjans, Neural Network Earnings Per Share Forecasting Models …”
    Volltext
    Journal Article
  11. 11

    Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms von Lago, Jesus, De Ridder, Fjo, De Schutter, Bart

    ISSN: 0306-2619, 1872-9118
    Veröffentlicht: Elsevier Ltd 01.07.2018
    Veröffentlicht in Applied energy (01.07.2018)
    “… •The largest benchmark to date in electricity price forecasting is presented.•27 state-of-the-art methods for predicting electricity prices are compared …”
    Volltext
    Journal Article
  12. 12

    Super ensemble learning for daily streamflow forecasting: large-scale demonstration and comparison with multiple machine learning algorithms von Tyralis, Hristos, Papacharalampous, Georgia, Langousis, Andreas

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.04.2021
    Veröffentlicht in Neural computing & applications (01.04.2021)
    “… Daily streamflow forecasting through data-driven approaches is traditionally performed using a single machine learning algorithm …”
    Volltext
    Journal Article
  13. 13

    Deep Learning Algorithms for Traffic Forecasting: A Comprehensive Review and Comparison with Classical Ones von Afandizadeh, Shahriar, Abdolahi, Saeid, Mirzahossein, Hamid

    ISSN: 0197-6729, 2042-3195
    Veröffentlicht: London John Wiley & Sons, Inc 11.09.2024
    Veröffentlicht in Journal of advanced transportation (11.09.2024)
    “… This paper aims to comprehensively review deep learning algorithms and classical models employed in traffic forecasting …”
    Volltext
    Journal Article
  14. 14

    A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem von Ahmed, Ali Najah, Van Lam, To, Hung, Nguyen Duy, Van Thieu, Nguyen, Kisi, Ozgur, El-Shafie, Ahmed

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.07.2021
    Veröffentlicht in Applied soft computing (01.07.2021)
    “… to hybridize the recently developed physics-inspired metaheuristic algorithms (MHAs) such as Equilibrium Optimization (EO …”
    Volltext
    Journal Article
  15. 15

    Comparison of Forecasting Algorithms on Retail Data von Dincoglu, Pelin, Aygun, Huseyin

    Veröffentlicht: IEEE 06.06.2022
    “… sales and preventing customer loss. In this study, sales forecasting will be performed by using regression and time series algorithms on the sales data of two stores …”
    Volltext
    Tagungsbericht
  16. 16

    Comparison Fletcher-Reeves and Polak-Ribiere ANN Algorithm for Forecasting Analysis von Hasibuan, Eka Hayana, Hendraputra, Surya, Achmad Daengs, GS, Saragih, Liharman

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.12.2022
    Veröffentlicht in Journal of physics. Conference series (01.12.2022)
    “… can be used as a reference and information for solving forecasting problems. The ANN algorithms compared were Conjugate Gradient Fletcher-Reeves and Conjugate Gradient Polak-Ribiere …”
    Volltext
    Journal Article
  17. 17

    Fuzzy neural network and LLE Algorithm for forecasting precipitation in tropical cyclones: comparisons with interpolation method by ECMWF and stepwise regression method von Huang, Ying, Jin, Long, Zhao, Hua-sheng, Huang, Xiao-yan

    ISSN: 0921-030X, 1573-0840
    Veröffentlicht: Dordrecht Springer Netherlands 01.03.2018
    Veröffentlicht in Natural hazards (Dordrecht) (01.03.2018)
    “… ) and a locally linear embedding (LLE) algorithm. The LLE algorithm is capable of finding meaningful low-dimensional architectures hidden in their nonlinear high-dimensional data space and separating the underlying factors …”
    Volltext
    Journal Article
  18. 18

    Comparison of the genetic algorithm and pattern search methods for forecasting optimal flow releases in a multi-storage system for flood control von Leon, Arturo S., Bian, Linlong, Tang, Yun

    ISSN: 1364-8152, 1873-6726
    Veröffentlicht: Oxford Elsevier Ltd 01.11.2021
    “… This paper compares the well-known genetic algorithm (GA) and pattern search (PS) optimization methods for forecasting optimal flow releases in a multi-storage system for flood control …”
    Volltext
    Journal Article
  19. 19

    Comparison of Machine Learning Algorithms for Daily Runoff Forecasting with Global Rainfall Products in Algeria von Bounab, Rayane, Boutaghane, Hamouda, Boulmaiz, Tayeb, Tramblay, Yves

    ISSN: 2073-4433, 2073-4433
    Veröffentlicht: Basel MDPI AG 01.02.2025
    Veröffentlicht in Atmosphere (01.02.2025)
    “… to (i) compare a conceptual model (GR4J) and seven machine learning algorithms (FFNN, ELM, LSTM, LSTM2, GRU, SVM, and GPR) and (ii …”
    Volltext
    Journal Article
  20. 20

    Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting von Rahimzad, Maryam, Moghaddam Nia, Alireza, Zolfonoon, Hosam, Soltani, Jaber, Danandeh Mehr, Ali, Kwon, Hyun-Han

    ISSN: 0920-4741, 1573-1650
    Veröffentlicht: Dordrecht Springer Netherlands 01.09.2021
    Veröffentlicht in Water resources management (01.09.2021)
    “… Streamflow forecasting plays a key role in improvement of water resource allocation, management and planning, flood warning and forecasting, and mitigation of flood damages …”
    Volltext
    Journal Article