Suchergebnisse - Fast proximal objective function optimization

  1. 1

    Efficient 3D inversion of potential field data using fast proximal objective function optimization algorithm von Peng, Guomin, Liu, Zhan, Xu, Kaijun, Bai, Yongliang, Du, Runlin

    ISSN: 0926-9851, 1879-1859
    Veröffentlicht: Elsevier B.V 01.12.2018
    Veröffentlicht in Journal of applied geophysics (01.12.2018)
    “… We have developed an efficient 3D potential field data inversion method using fast proximal objective function (FPOF …”
    Volltext
    Journal Article
  2. 2

    A fast proximal gradient algorithm for decentralized composite optimization over directed networks von Zeng, Jinshan, He, Tao, Wang, Mingwen

    ISSN: 0167-6911, 1872-7956
    Veröffentlicht: Elsevier B.V 01.09.2017
    Veröffentlicht in Systems & control letters (01.09.2017)
    “… This paper proposes a fast decentralized algorithm for solving a consensus optimization problem defined in a directed networked multi-agent system, where the local objective functions have the smooth …”
    Volltext
    Journal Article
  3. 3

    Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations von Zhang, Hengmin, Qian, Jianjun, Gao, Junbin, Yang, Jian, Xu, Chunyan

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.09.2019
    “… ) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs …”
    Volltext
    Journal Article
  4. 4

    An accelerated proximal gradient method for multiobjective optimization von Tanabe, Hiroki, Fukuda, Ellen H., Yamashita, Nobuo

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer US 01.11.2023
    Veröffentlicht in Computational optimization and applications (01.11.2023)
    “… This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed …”
    Volltext
    Journal Article
  5. 5

    Stochastic Proximal Gradient Consensus Over Random Networks von Hong, Mingyi, Chang, Tsung-Hui

    ISSN: 1053-587X, 1941-0476
    Veröffentlicht: IEEE 01.06.2017
    Veröffentlicht in IEEE transactions on signal processing (01.06.2017)
    “… Each agent has access to some local objective function, and it only has unbiased estimates of the gradients of the smooth component …”
    Volltext
    Journal Article
  6. 6

    Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability von Wu, Fan, Bian, Wei

    ISSN: 0022-3239, 1573-2878
    Veröffentlicht: New York Springer US 01.05.2023
    Veröffentlicht in Journal of optimization theory and applications (01.05.2023)
    “… We propose a smoothing accelerated proximal gradient (SAPG) method with fast convergence rate for finding a minimizer of a decomposable nonsmooth convex function over a closed convex set …”
    Volltext
    Journal Article
  7. 7

    A fast computational Gauss–Seidel type iPALM algorithm using an incremental aggregated gradient strategy for weakly convex composite optimization problems with application in image processing von Jia, Zehui, Hou, Junru, Dong, Ping, Liu, Zhiyu

    ISSN: 0377-0427
    Veröffentlicht: Elsevier B.V 01.03.2026
    Veröffentlicht in Journal of computational and applied mathematics (01.03.2026)
    “… ) for solving a class of nonconvex and nonsmooth composite optimization problems, whose objective function is the sum of a finite number of smooth nonconvex functions and nonsmooth weakly convex functions …”
    Volltext
    Journal Article
  8. 8

    A fast continuous time approach for non-smooth convex optimization using Tikhonov regularization technique von Karapetyants, Mikhail A.

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer US 01.03.2024
    Veröffentlicht in Computational optimization and applications (01.03.2024)
    “… In this paper we would like to address the classical optimization problem of minimizing a proper, convex and lower semicontinuous function via the second order in time dynamics, combining viscous …”
    Volltext
    Journal Article
  9. 9

    A fast dual proximal gradient algorithm for convex minimization and applications von Beck, Amir, Teboulle, Marc

    ISSN: 0167-6377, 1872-7468
    Veröffentlicht: Elsevier B.V 01.01.2014
    Veröffentlicht in Operations research letters (01.01.2014)
    “… We present a dual-based proximal gradient scheme for solving this problem. We show that although the rate of convergence of the dual objective function sequence converges to the optimal value with the rate O(1/k2 …”
    Volltext
    Journal Article
  10. 10

    A fast proximal iteratively reweighted nuclear norm algorithm for nonconvex low-rank matrix minimization problems von Ge, Zhili, Zhang, Xin, Wu, Zhongming

    ISSN: 0168-9274, 1873-5460
    Veröffentlicht: Elsevier B.V 01.09.2022
    Veröffentlicht in Applied numerical mathematics (01.09.2022)
    “… In this paper, we propose a fast proximal iteratively reweighted nuclear norm algorithm with extrapolation for solving a class of nonconvex low-rank matrix minimization problems …”
    Volltext
    Journal Article
  11. 11

    Fast Proximal Gradient Methods for Nonsmooth Convex Optimization for Tomographic Image Reconstruction von Helou, Elias S., Zibetti, Marcelo V. W., Herman, Gabor T.

    ISSN: 1557-2064, 1557-2072
    Veröffentlicht: New York Springer US 01.12.2020
    Veröffentlicht in Sensing and imaging (01.12.2020)
    “… The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction …”
    Volltext
    Journal Article
  12. 12

    A fast continuous time approach with time scaling for nonsmooth convex optimization von Boţ, Radu Ioan, Karapetyants, Mikhail A.

    ISSN: 2731-4235, 1687-1839, 2731-4235, 1687-1847
    Veröffentlicht: Cham Springer International Publishing 16.12.2022
    Veröffentlicht in Advances in continuous and discrete models (16.12.2022)
    “… From here, we derive fast convergence rates for the objective function along a path which is the image of the trajectory of the system through the proximal operator of the first. Moreover, we prove the weak convergence of the trajectory of the system to a global minimizer of the objective function. Finally, we provide multiple numerical examples illustrating the theoretical results …”
    Volltext
    Journal Article
  13. 13

    A Novel AUC Maximization Imbalanced Learning Approach for Predicting Composite Outcomes in COVID-19 Hospitalized Patients von Wang, Guanjin, Kwok, Stephen Wai Hang, Yousufuddin, Mohammed, Sohel, Ferdous

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.08.2023
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.08.2023)
    “… The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning …”
    Volltext
    Journal Article
  14. 14

    Proximal gradient methods with inexact oracle of degree q for composite optimization: Proximal gradient methods with inexact oracle von Nabou, Yassine, Glineur, François, Necoara, Ion

    ISSN: 1862-4472, 1862-4480
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2025
    Veröffentlicht in Optimization letters (01.03.2025)
    “… We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non …”
    Volltext
    Journal Article
  15. 15

    On the convergence of an inertial proximal algorithm with a Tikhonov regularization term von László, Szilárd Csaba

    ISSN: 1007-5704
    Veröffentlicht: Elsevier B.V 01.10.2025
    “… We show that for appropriate Tikhonov regularization parameters the value of the objective function in the sequences generated by our algorithm converge fast (with arbitrary rate …”
    Volltext
    Journal Article
  16. 16

    First-order methods of smooth convex optimization with inexact oracle von Devolder, Olivier, Glineur, François, Nesterov, Yurii

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2014
    Veröffentlicht in Mathematical programming (01.08.2014)
    “… in particular their dependence on the accuracy of the oracle and the desired accuracy of the objective function …”
    Volltext
    Journal Article
  17. 17

    Proximal gradient methods with inexact oracle of degree q for composite optimization von Nabou, Yassine, Glineur, François, Necoara, Ion

    ISSN: 1862-4472, 1862-4480
    Veröffentlicht: 01.03.2025
    Veröffentlicht in Optimization letters (01.03.2025)
    “… We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non …”
    Volltext
    Journal Article
  18. 18

    Fast and Global Optimal Nonconvex Matrix Factorization via Perturbed Alternating Proximal Point von Lu, Songtao, Hong, Mingyi, Wang, Zhengdao

    ISSN: 2379-190X
    Veröffentlicht: IEEE 01.05.2019
    “… Alternating minimization is a simple but popular approach which has been applied to problems in optimization, machine learning, data mining, and signal processing, etc …”
    Volltext
    Tagungsbericht
  19. 19

    Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions von Johnstone, Patrick R., Moulin, Pierre

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer US 01.06.2017
    Veröffentlicht in Computational optimization and applications (01.06.2017)
    “… In these problems, the objective is the sum of two closed, proper, and convex functions where one is smooth and the other admits a computationally inexpensive proximal operator …”
    Volltext
    Journal Article
  20. 20

    A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem von Xiao, Lin, Zhang, Tong

    ISSN: 1052-6234, 1095-7189
    Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
    Veröffentlicht in SIAM journal on optimization (01.01.2013)
    “… The standard proximal gradient method, also known as iterative soft-thresholding when applied to this problem, has low computational cost per iteration but a rather slow convergence rate …”
    Volltext
    Journal Article