Suchergebnisse - Exponentiated Gradient algorithm

  1. 1

    Estimating the spectrum in computed tomography via Kullback–Leibler divergence constrained optimization von Ha, Wooseok, Sidky, Emil Y., Barber, Rina Foygel, Schmidt, Taly Gilat, Pan, Xiaochuan

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.01.2019
    Veröffentlicht in Medical physics (Lancaster) (01.01.2019)
    “… The formulated constrained optimization problem is convex and can be solved efficiently by use of the exponentiatedgradient (EG) algorithm …”
    Volltext
    Journal Article
  2. 2

    EGRank: An exponentiated gradient algorithm for sparse learning-to-rank von Du, Lei, Pan, Yan, Ding, Jintang, Lai, Hanjiang, Huang, Changqin

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.10.2018
    Veröffentlicht in Information sciences (01.10.2018)
    “… An exponential gradient algorithm is proposed to learn sparse models for learning-to-rank, which can be formulated as a convex optimization problem with the ℓ1 constraint …”
    Volltext
    Journal Article
  3. 3

    Generalized Exponentiated Gradient Algorithms and Their Application to On-Line Portfolio Selection von Cichocki, Andrzej, Cruces, Sergio, Sarmiento, Auxiliadora, Tanaka, Toshihisa

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning …”
    Volltext
    Journal Article
  4. 4

    A Class of Diffusion Zero Attracting Stochastic Gradient Algorithms With Exponentiated Error Cost Functions von Luo, Zhengyan, Zhao, Haiquan, Zeng, Xiangping

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2020
    Veröffentlicht in IEEE access (2020)
    “… In this paper, a class of diffusion zero-attracting stochastic gradient algorithms with exponentiated error cost functions is put forward due to its good performance for sparse system identification …”
    Volltext
    Journal Article
  5. 5

    Convergence of exponentiated gradient algorithms von Hill, S.I., Williamson, R.C.

    ISSN: 1053-587X, 1941-0476
    Veröffentlicht: New York, NY IEEE 01.06.2001
    Veröffentlicht in IEEE transactions on signal processing (01.06.2001)
    “… This paper studies three related algorithms: the (traditional) gradient descent (GD) algorithm, the exponentiated gradient algorithm with positive and negative weights …”
    Volltext
    Journal Article
  6. 6

    A Study of the Exponentiated Gradient +/- Algorithm for Stochastic Optimization of Neural Networks von Parks, David F

    ISBN: 9781687983923, 1687983925
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2019
    “… Exponentiated Gradient +/- (abbr. EG+-) is a gradient update algorithm drawn from work by Manfred Warmuth …”
    Volltext
    Dissertation
  7. 7

    A class of stochastic gradient algorithms with exponentiated error cost functions von Boukis, C., Mandic, D.P., Constantinides, A.G.

    ISSN: 1051-2004, 1095-4333
    Veröffentlicht: Elsevier Inc 01.03.2009
    Veröffentlicht in Digital signal processing (01.03.2009)
    “… A novel class of stochastic gradient descent algorithms is introduced based on the minimisation of convex cost functions with exponential dependence on the adaptation error, instead …”
    Volltext
    Journal Article
  8. 8

    An Improved Exponentiated stochastic gradient algorithm von Rusu, C, Cowan, C F N

    ISBN: 1424453089, 9781424453085
    ISSN: 0271-4302
    Veröffentlicht: IEEE 01.05.2010
    “… Recently, few stochastic gradient algorithms have been proposed and they are based on cost functions that have exponential dependence on the chosen error …”
    Volltext
    Tagungsbericht
  9. 9

    Kernelization of matrix updates, when and how? von Warmuth, Manfred K., Kotłowski, Wojciech, Zhou, Shuisheng

    ISSN: 0304-3975, 1879-2294
    Veröffentlicht: Elsevier B.V 13.11.2014
    Veröffentlicht in Theoretical computer science (13.11.2014)
    “… We define what it means for a learning algorithm to be kernelizable in the case when the instances are vectors, asymmetric matrices and symmetric matrices, respectively …”
    Volltext
    Journal Article
  10. 10

    On the Efficient Implementation of the Matrix Exponentiated Gradient Algorithm for Low-Rank Matrix Optimization von Garber, Dan, Kaplan, Atara

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 30.10.2022
    Veröffentlicht in arXiv.org (30.10.2022)
    “… In particular, the desirable choice is the Matrix Exponentiated Gradient (MEG) method which is based on the Bregman distance induced by the (negative …”
    Volltext
    Paper
  11. 11

    Generalized Exponentiated Gradient Algorithms and Their Application to On-Line Portfolio Selection von Cichocki, Andrzej, Cruces, Sergio, Sarmiento, Auxiliadora, Tanaka, Toshihisa

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 02.06.2024
    Veröffentlicht in arXiv.org (02.06.2024)
    “… This paper introduces a novel family of generalized exponentiated gradient (EG) updates derived from an Alpha-Beta divergence regularization function …”
    Volltext
    Paper
  12. 12

    Online variance minimization von Warmuth, Manfred K., Kuzmin, Dima

    ISSN: 0885-6125, 1573-0565
    Veröffentlicht: Boston Springer US 01.04.2012
    Veröffentlicht in Machine learning (01.04.2012)
    “… . For the first parameter space we apply the Exponentiated Gradient algorithm …”
    Volltext
    Journal Article
  13. 13

    Energy-Efficient LSTM Networks for Online Learning von Ergen, Tolga, Mirza, Ali H., Kozat, Suleyman Serdar

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: Piscataway IEEE 01.08.2020
    “… For this structure, we also introduce highly effective online training algorithms. We first provide a generic LSTM-based regression structure for variable-length input sequences …”
    Volltext
    Journal Article
  14. 14

    Optimistic optimisation of composite objective with exponentiated update von Shao, Weijia, Sivrikaya, Fikret, Albayrak, Sahin

    ISSN: 0885-6125, 1573-0565
    Veröffentlicht: New York Springer US 01.12.2022
    Veröffentlicht in Machine learning (01.12.2022)
    “… The algorithms can be interpreted as the combination of the exponentiated gradient and p -norm algorithm …”
    Volltext
    Journal Article
  15. 15

    Stochastic gradient algorithm based on an improved higher order exponentiated error cost function von Bin Mansoor, Umair, Asad, Syed Muhammad, Zerguine, Azzedine

    ISSN: 1058-6393
    Veröffentlicht: IEEE 01.11.2014
    “… We propose stochastic gradient algorithm based on exponentiated cost functions that employ higher order moments of the chosen error …”
    Volltext
    Tagungsbericht
  16. 16

    An exponentiated gradient adaptive algorithm for blind identification of sparse SIMO systems von Benesty, J., Yiteng Huang, Jingdong Chen

    ISBN: 9780780384842, 0780384849
    ISSN: 1520-6149
    Veröffentlicht: Piscataway, N.J IEEE 2004
    “… Sparse impulse responses are encountered in many acoustic and wireless channels. Recently, a class of exponentiated gradient (EG …”
    Volltext
    Tagungsbericht
  17. 17

    The LMS, PNLMS, and exponentiated gradient algorithms von Benesty, Jacob, Yiteng Huang

    ISBN: 9783200001657, 3200001658
    Veröffentlicht: IEEE 01.09.2004
    “… ). Recently, a class of exponentiated gradient (EG) algorithms has been proposed. One of the algorithms belonging to this class, the so-called EG …”
    Volltext
    Tagungsbericht Journal Article
  18. 18

    A Comparison of New and Old Algorithms for a Mixture Estimation Problem von Helmbold, David P., Schapire, Robert E., Singer, Yoram, Warmuth, Manfred K.

    ISSN: 0885-6125, 1573-0565
    Veröffentlicht: Dordrecht Springer Nature B.V 1997
    Veröffentlicht in Machine learning (1997)
    “… We adapt a framework developed for supervised learning and give simple derivations for many of the standard iterative algorithms like gradient projection and EM …”
    Volltext
    Journal Article
  19. 19

    Exponentiated Gradient Exploration for Active Learning von Bouneffouf, Djallel

    ISSN: 2073-431X, 2073-431X
    Veröffentlicht: Basel MDPI AG 01.03.2016
    Veröffentlicht in Computers (Basel) (01.03.2016)
    “… more informative. In this setting, we propose a sequential algorithm named exponentiated gradient (EG)-active that can improve any active learning algorithm by an optimal random exploration …”
    Volltext
    Journal Article
  20. 20

    An analysis of the exponentiated gradient descent algorithm von Hill, S.I., Williamson, R.C.

    ISBN: 9781864354515, 1864354518
    Veröffentlicht: IEEE 1999
    “… : the gradient descent (GD) algorithm, the exponentiated gradient algorithm with positive and negative weights …”
    Volltext
    Tagungsbericht