Suchergebnisse - Encoder-Decoder ConvLSTM networks

  1. 1

    Predicting 360° Video Saliency: A ConvLSTM Encoder-Decoder Network With Spatio-Temporal Consistency von Wan, Zhaolin, Qin, Han, Xiong, Ruiqin, Li, Zhiyang, Fan, Xiaopeng, Zhao, Debin

    ISSN: 2156-3357, 2156-3365
    Veröffentlicht: Piscataway IEEE 01.06.2024
    “… In this study, we propose a novel spatio-temporal consistency generative network for 360° VSP. A dual-stream encoder-decoder architecture is adopted to process the forward and backward frame sequences of 360 …”
    Volltext
    Journal Article
  2. 2

    Advancing spatiotemporal forecasts of CO2 plume migration using deep learning networks with transfer learning and interpretation analysis von Fan, Ming, Wang, Hongsheng, Zhang, Jing, Hosseini, Seyyed A., Lu, Dan

    ISSN: 1750-5836
    Veröffentlicht: United States Elsevier Ltd 01.02.2024
    Veröffentlicht in International journal of greenhouse gas control (01.02.2024)
    “… In this work, we propose two deep learning models, Auto-Encoder (AE)-LSTM and Encoder-Decoder (ED …”
    Volltext
    Journal Article
  3. 3

    ResMIBCU-Net: an encoderdecoder network with residual blocks, modified inverted residual block, and bi-directional ConvLSTM for impacted tooth segmentation in panoramic X-ray images von Imak, Andaç, Çelebi, Adalet, Polat, Onur, Türkoğlu, Muammer, Şengür, Abdulkadir

    ISSN: 0911-6028, 1613-9674, 1613-9674
    Veröffentlicht: Singapore Springer Nature Singapore 01.10.2023
    Veröffentlicht in Oral radiology (01.10.2023)
    “… In recent years, major advances have been made in medical imaging segmentation using deep convolutional neural network-based networks …”
    Volltext
    Journal Article
  4. 4

    PDED-ConvLSTM: Pyramid Dilated Deeper EncoderDecoder Convolutional LSTM for Arctic Sea Ice Concentration Prediction von Zhang, Deyu, Wang, Changying, Huang, Baoxiang, Ren, Jing, Zhao, Junli, Hou, Guojia

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.04.2024
    Veröffentlicht in Applied sciences (01.04.2024)
    “… To address these challenges, we propose an innovative encoderdecoder pyramid dilated convolutional long short-term memory network (DED-ConvLSTM …”
    Volltext
    Journal Article
  5. 5

    Prediction of maize growth stages based on deep learning von Yue, Yang, Li, Jin-Hai, Fan, Li-Feng, Zhang, Li-Li, Zhao, Peng-Fei, Zhou, Qiao, Wang, Nan, Wang, Zhong-Yi, Huang, Lan, Dong, Xue-Hui

    ISSN: 0168-1699, 1872-7107
    Veröffentlicht: Amsterdam Elsevier B.V 01.05.2020
    Veröffentlicht in Computers and electronics in agriculture (01.05.2020)
    “… •ConvLSTM encoder-decoder model can forecast daily weather factors correctly.•Hybrid model and data-driven model can predict maize growth stages …”
    Volltext
    Journal Article
  6. 6

    ED‐ConvLSTM: A Novel Global Ionospheric Total Electron Content Medium‐Term Forecast Model von Xia, Guozhen, Zhang, Fubin, Wang, Cheng, Zhou, Chen

    ISSN: 1542-7390, 1539-4964, 1542-7390
    Veröffentlicht: Washington John Wiley & Sons, Inc 01.08.2022
    Veröffentlicht in Space Weather (01.08.2022)
    “… In this paper, we proposed an innovative encoderdecoder structure with a convolution long short‐term memory (ED‐ConvLSTM …”
    Volltext
    Journal Article
  7. 7

    Dual Convolutional LSTM Network for Referring Image Segmentation von Ye, Linwei, Liu, Zhi, Wang, Yang

    ISSN: 1520-9210, 1941-0077
    Veröffentlicht: Piscataway IEEE 01.12.2020
    Veröffentlicht in IEEE transactions on multimedia (01.12.2020)
    “… Our model consists of an encoder network and a decoder network, where ConvLSTM is used in both encoder and decoder networks to capture spatial and sequential information …”
    Volltext
    Journal Article
  8. 8

    Semantic segmentation of oblique UAV video based on ConvLSTM in complex urban area von Majidizadeh, Abbas, Hasani, Hadiseh, Jafari, Marzieh

    ISSN: 1865-0473, 1865-0481
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
    Veröffentlicht in Earth science informatics (01.08.2024)
    “… . , require accurate and efficient segmentation algorithms. The proposed method implements a deep learning framework combining SegNet encoder-decoder architecture and convolutional long short-term memory (ConvLSTM …”
    Volltext
    Journal Article
  9. 9

    Short-Term Load Forecasting Using Encoder-Decoder WaveNet: Application to the French Grid von Dorado Rueda, Fernando, Durán Suárez, Jaime, del Real Torres, Alejandro

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 01.05.2021
    Veröffentlicht in Energies (Basel) (01.05.2021)
    “… To this end, the authors propose an encoder-decoder architecture inspired by WaveNet, a deep generative model initially designed by Google DeepMind for raw audio waveforms …”
    Volltext
    Journal Article
  10. 10

    Self-Attention (SA)-ConvLSTM EncoderDecoder Structure-Based Video Prediction for Dynamic Motion Estimation von Kim, Jeongdae, Choo, Hyunseung, Jeong, Jongpil

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Applied sciences (01.12.2024)
    “… However, ConvLSTM has limitations in capturing long-term temporal dependencies. To solve this problem, this study proposes an encoder …”
    Volltext
    Journal Article
  11. 11

    Energy Demand Load Forecasting for Electric Vehicle Charging Stations Network based on ConvLSTM and BiConvLSTM Architectures von Mohammad, Faisal, Kang, Dong-Ki, Ahmed, Mohamed A., Kim, Young-Chon

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2023
    Veröffentlicht in IEEE access (01.01.2023)
    “… ) as a new entity is one of the most important challenging tasks. The implementation of the EVCS network infrastructure should facilitate the adoption of the spatiotemporal electricity demand for EVs …”
    Volltext
    Journal Article
  12. 12

    Spatiotemporal Prediction of Ionospheric Total Electron Content Based on ED-ConvLSTM von Li, Liangchao, Liu, Haijun, Le, Huijun, Yuan, Jing, Shan, Weifeng, Han, Ying, Yuan, Guoming, Cui, Chunjie, Wang, Junling

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.06.2023
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.06.2023)
    “… Our ED-ConvLSTM model is built based on the encoder-decoder architecture, which includes two modules …”
    Volltext
    Journal Article
  13. 13

    Effective Multi-Step PM2.5 and PM10 Air Quality Forecasting Using Bidirectional ConvLSTM Encoder-Decoder With STA Mechanism von Lakshmi, S., Krishnamoorthy, A.

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… Effective prediction of PM2.5 and PM10 levels is essential for preserving public health and informing governmental actions. Nevertheless, the unpredictable …”
    Volltext
    Journal Article
  14. 14

    ED‐AttConvLSTM: An Ionospheric TEC Map Prediction Model Using Adaptive Weighted Spatiotemporal Features von Li, Liangchao, Liu, Haijun, Le, Huijun, Yuan, Jing, Wang, Haoran, Chen, Yi, Shan, Weifeng, Ma, Li, Cui, Chunjie

    ISSN: 1542-7390, 1539-4964, 1542-7390
    Veröffentlicht: Washington John Wiley & Sons, Inc 01.03.2024
    Veröffentlicht in Space Weather (01.03.2024)
    “… ‐AttConvLSTM, using a Convolutional Long Short‐Term Memory (ConvLSTM) network and attention mechanism based on encoderdecoder structure …”
    Volltext
    Journal Article
  15. 15

    New encoderdecoder convolutional LSTM neural network architectures for next-day global ionosphere maps forecast von de Paulo, M. C. M., Marques, H. A., Feitosa, R. Q., Ferreira, M. P.

    ISSN: 1080-5370, 1521-1886
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
    Veröffentlicht in GPS solutions (01.04.2023)
    “… ) of the days before the prediction period. We proposed modifications to the encoderdecoder convolutional long short-term memory (ED-ConvLSTM …”
    Volltext
    Journal Article
  16. 16

    Operational Forecasting of Global Ionospheric TEC Maps 1-, 2-, and 3-Day in Advance by ConvLSTM Model von Yang, Jiayue, Huang, Wengeng, Xia, Guozhen, Zhou, Chen, Chen, Yanhong

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.05.2024
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.05.2024)
    “… The proposed model utilizes an encoder-decoder structure with a Convolution Long Short-Term Memory (ConvLSTM …”
    Volltext
    Journal Article
  17. 17

    A Robust Change Detection Methodology for Flood Events Using SAR Images von Al-Saad, Mina, Aburaed, Nour, Zitouni, M. Sami, Alkhatib, Mohammed Q., Almansoori, Saeed, Al Ahmad, Hussain

    ISSN: 2153-7003
    Veröffentlicht: IEEE 16.07.2023
    “… ) that follows encoder-decoder scheme. By introducing Bidirectional Convolutional LSTM (ConvLSTM) layers into its architecture, the proposed Temporal-Spatial Encoder-Decoder Network …”
    Volltext
    Tagungsbericht
  18. 18

    A spatiotemporal correlation deep learning network for brain penumbra disease von Liu, Liangliang, Zhang, Pei, Liang, Gongbo, Xiong, Shufeng, Wang, Jianxin, Zheng, Guang

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 01.02.2023
    Veröffentlicht in Neurocomputing (Amsterdam) (01.02.2023)
    “… Here, we propose an encoder-decoder network (ConvLSTM-Net) with a specifically convolutional long short-term memory skip connection to extract the spatiotemporal correlations of features of adjacent slices in a non-linear manner …”
    Volltext
    Journal Article
  19. 19

    3D convolutional long short-term encoder-decoder network for moving object segmentation von Turker, Anil, Eksioglu, Ender

    ISSN: 1820-0214, 2406-1018
    Veröffentlicht: 2024
    Veröffentlicht in Computer Science and Information Systems (2024)
    “… While traditional approaches to MOS rely on hand-crafted features or background modeling, deep learning methods using Convolution Neural Networks (CNNs …”
    Volltext
    Journal Article
  20. 20

    Ship Roll Motion Prediction Using ConvLSTM with Attention Mechanism von Li, Weizhong, Ren, Junsheng

    ISSN: 1934-1768
    Veröffentlicht: Technical Committee on Control Theory, Chinese Association of Automation 25.07.2022
    Veröffentlicht in Chinese Control Conference (25.07.2022)
    “… In response to this challenge, a short-term roll motion prediction model based on the convolutional long-short-term memory (ConvLSTM …”
    Volltext
    Tagungsbericht