Suchergebnisse - Emotion Recognition and Analysis in Multimodal Data

  1. 1
  2. 2
  3. 3

    Improved EEG-based emotion recognition through information enhancement in connectivity feature map von M. A. H. Akhand, Mahfuza Akter Maria, Md Abdus Samad Kamal, Kazuyuki Murase

    ISSN: 2045-2322
    Veröffentlicht: Springer Science and Business Media LLC 23.08.2023
    Veröffentlicht in Scientific Reports (23.08.2023)
    Volltext
    Journal Article
  4. 4

    Multimodal data analysis in emotion recognition: a review von Berdyshev, Daniil A., Shishkin, Aleksei G.

    ISSN: 1818-1015, 2313-5417
    Veröffentlicht: 24.09.2025
    Veröffentlicht in Modelirovanie i analiz informacionnyh sistem (24.09.2025)
    “… The use of multimodal data in emotion recognition systems has great potential for applications in various fields …”
    Volltext
    Journal Article
  5. 5
  6. 6
  7. 7

    Linear And Nonlinear Analysis of Multimodal Physiological Data for Emotion Recognition von Amirhosein Dolatabadi, Mahsa Heydari, Bahar Hashempour, Farnaz Asadiof, Shaghayegh Radmehr

    ISSN: 3041-850X
    Veröffentlicht: Bilijipub publisher 01.09.2025
    “… Emotion recognition using physiological data analysis through machine learning approaches involves the utilization of various physiological signals to infer an individual's emotional state …”
    Volltext
    Journal Article
  8. 8

    MindLink-Eumpy: An Open-Source Python Toolbox for Multimodal Emotion Recognition von Li, Ruixin, Liang, Yan, Liu, Xiaojian, Wang, Bingbing, Huang, Wenxin, Cai, Zhaoxin, Ye, Yaoguang, Qiu, Lina, Pan, Jiahui

    ISSN: 1662-5161, 1662-5161
    Veröffentlicht: Switzerland Frontiers Research Foundation 19.02.2021
    Veröffentlicht in Frontiers in human neuroscience (19.02.2021)
    “… Emotion recognition plays an important role in intelligent human–computer interaction, but the related research still faces the problems of low accuracy and subject dependence …”
    Volltext
    Journal Article
  9. 9

    A systematic review on affective computing: emotion models, databases, and recent advances von Wang, Yan, Song, Wei, Tao, Wei, Liotta, Antonio, Yang, Dawei, Li, Xinlei, Gao, Shuyong, Sun, Yixuan, Ge, Weifeng, Zhang, Wei, Zhang, Wenqiang

    ISSN: 1566-2535, 1872-6305
    Veröffentlicht: Elsevier B.V 01.07.2022
    Veröffentlicht in Information fusion (01.07.2022)
    “… Affective computing conjoins the research topics of emotion recognition and sentiment analysis, and can be realized with unimodal or multimodal data, consisting primarily of physical information (e.g …”
    Volltext
    Journal Article
  10. 10

    Multimodal Emotion Detection via Attention-Based Fusion of Extracted Facial and Speech Features von Mamieva, Dilnoza, Abdusalomov, Akmalbek Bobomirzaevich, Kutlimuratov, Alpamis, Muminov, Bahodir, Whangbo, Taeg Keun

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 09.06.2023
    Veröffentlicht in Sensors (Basel, Switzerland) (09.06.2023)
    “… The research suggests a new attention-based approach to multimodal emotion recognition. This technique integrates facial and speech features that have been …”
    Volltext
    Journal Article
  11. 11

    Investigating the brain network characteristics of multimodal emotion recognition and its classification applications based on functional connectivity patterns von Gu, Jin, Luo, Xiaoqi, Gong, Xinhao, Su, Chenxu

    ISSN: 1746-8094
    Veröffentlicht: Elsevier Ltd 01.10.2024
    Veröffentlicht in Biomedical signal processing and control (01.10.2024)
    “… Emotion information can be expressed in multiple modal stimuli, and the brain can recognize multi-modal emotions efficiently and accurately …”
    Volltext
    Journal Article
  12. 12

    Canonical Correlation Analysis for Data Fusion in Multimodal Emotion Recognition von Nemati, Shahla

    Veröffentlicht: IEEE 01.12.2018
    “… Multimodal emotion recognition systems aim at classifying emotion data, usually from different natures, into discrete affective categories …”
    Volltext
    Tagungsbericht
  13. 13

    MIST: Multimodal emotion recognition using DeBERTa for text, Semi-CNN for speech, ResNet-50 for facial, and 3D-CNN for motion analysis von Boitel, Enguerrand, Mohasseb, Alaa, Haig, Ella

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 25.04.2025
    Veröffentlicht in Expert systems with applications (25.04.2025)
    “… –computer interaction. This paper introduces the MIST (Motion, Image, Speech, and Text) framework, a novel multimodal approach to emotion recognition that integrates diverse data modalities …”
    Volltext
    Journal Article
  14. 14

    Modality-uncertainty-aware knowledge distillation framework for multimodal sentiment analysis von Wang, Nan, Wang, Qi

    ISSN: 2199-4536, 2198-6053
    Veröffentlicht: Cham Springer International Publishing 01.01.2026
    Veröffentlicht in Complex & intelligent systems (01.01.2026)
    “… Multimodal sentiment analysis (MSA) has become increasingly important for understanding human emotions, with applications in areas such as human-computer interaction, social media analysis, and emotion recognition …”
    Volltext
    Journal Article
  15. 15

    Model for Determining the Psycho-Emotional State of a Person Based on Multimodal Data Analysis von Shakhovska, Nataliya, Zherebetskyi, Oleh, Lupenko, Serhii

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.03.2024
    Veröffentlicht in Applied sciences (01.03.2024)
    “… The paper proposes different neural network structures for emotion recognition based on unimodal flows and models for the margin of the multimodal data …”
    Volltext
    Journal Article
  16. 16

    Multimodal rough set transformer for sentiment analysis and emotion recognition von Sun, Xinwei, He, Huijie, Tang, Haoyang, Zeng, Kai, Shen, Tao

    ISSN: 2376-595X
    Veröffentlicht: IEEE 12.08.2023
    “… Transformer models have shown exceptional performance in multimodal fusion. However, traditional dot product transformers do not tolerate uncertainty inside sentiment analysis and emotion recognition data …”
    Volltext
    Tagungsbericht
  17. 17

    Comparing Recognition Performance and Robustness of Multimodal Deep Learning Models for Multimodal Emotion Recognition von Liu, Wei, Qiu, Jie-Lin, Zheng, Wei-Long, Lu, Bao-Liang

    ISSN: 2379-8920, 2379-8939
    Veröffentlicht: Piscataway IEEE 01.06.2022
    “… Multimodal signals are powerful for emotion recognition since they can represent emotions comprehensively …”
    Volltext
    Journal Article
  18. 18

    K-Means Clustering-Based Kernel Canonical Correlation Analysis for Multimodal Emotion Recognition in Human-Robot Interaction von Chen, Luefeng, Wang, Kuanlin, Li, Min, Wu, Min, Pedrycz, Witold, Hirota, Kaoru

    ISSN: 0278-0046, 1557-9948
    Veröffentlicht: New York IEEE 01.01.2023
    Veröffentlicht in IEEE transactions on industrial electronics (1982) (01.01.2023)
    “… In this article, K -meansclustering-based Kernel canonical correlation analysis algorithm is proposed for multimodal emotion recognition in human-robot interaction (HRI …”
    Volltext
    Journal Article
  19. 19

    A Multimodal Framework for Speech Emotion Recognition in Low-Resource Languages von Mamyr Altaibek, Zulkhazhav, Altanbek, Yergesh, Banu, Gulmira Bekmanova, Tileukhan Aibol

    ISSN: 2766-8649, 2766-8649
    Veröffentlicht: 30.09.2025
    Veröffentlicht in Journal of Artificial Intelligence and Technology (30.09.2025)
    “… ), which combines text-based semantic analysis and audio emotion recognition to leverage complementary features of linguistic and paralinguistic data …”
    Volltext
    Journal Article
  20. 20

    Emotion recognition from unimodal to multimodal analysis: A review von Ezzameli, K., Mahersia, H.

    ISSN: 1566-2535, 1872-6305
    Veröffentlicht: Elsevier B.V 01.11.2023
    Veröffentlicht in Information fusion (01.11.2023)
    “… Due to the variety of data, the research area of multimodal machine learning poses special problems for computer scientists …”
    Volltext
    Journal Article