Suchergebnisse - Efficient Data Science in Python

  1. 1

    Blink: Towards Efficient RDMA-based Communication Coroutines for Parallel Python Applications von Shafi, Aamir, Hashmi, Jahanzeb Maqbool, Subramoni, Hari, Panda, Dhabaleswar K.

    ISSN: 2640-0316
    Veröffentlicht: IEEE 01.12.2020
    “… Python is emerging as a popular language in the data science community due to its ease-of-use, vibrant community, and rich set of libraries …”
    Volltext
    Tagungsbericht
  2. 2

    PyTond: Efficient Python Data Science on the Shoulders of Databases von Shahrokhi, Hesam, Kaboli, Amirali, Ghorbani, Mahdi, Shaikhha, Amir

    ISSN: 2375-026X
    Veröffentlicht: IEEE 13.05.2024
    Veröffentlicht in Data engineering (13.05.2024)
    “… Python data science libraries such as Pandas and NumPy have recently gained immense popularity …”
    Volltext
    Tagungsbericht
  3. 3

    Python data science essentials: become an efficient data science practitioner by thoroughly understanding the key concepts of Python von Boschetti, Alberto, Massaron, Luca

    ISBN: 1785280422, 9781785287893, 1785287893, 9781785280429
    Veröffentlicht: Birmingham PACKT Publishing 2015
    “… The book starts by introducing you to setting up your essential data science toolbox …”
    Volltext
    E-Book
  4. 4

    pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science von Guerra, João Victor da Silva, Ribeiro-Filho, Helder Veras, Jara, Gabriel Ernesto, Bortot, Leandro Oliveira, Pereira, José Geraldo de Carvalho, Lopes-de-Oliveira, Paulo Sérgio

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 20.12.2021
    Veröffentlicht in BMC bioinformatics (20.12.2021)
    “… To fulfill this need, we developed pyKVFinder, a Python package to detect and characterize cavities in biomolecular structures for data science and automated pipelines …”
    Volltext
    Journal Article
  5. 5

    PyTond: Efficient Python Data Science on the Shoulders of Databases von Shahrokhi, Hesam, Kaboli, Amirali, Ghorbani, Mahdi, Shaikhha, Amir

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.07.2024
    Veröffentlicht in arXiv.org (16.07.2024)
    “… Python data science libraries such as Pandas and NumPy have recently gained immense popularity …”
    Volltext
    Paper
  6. 6

    Hands-on data science and Python machine learning: perform data mining and machine learning efficiently using Python and Spark von Kane, Frank

    ISBN: 9781787280748, 1787280748
    Veröffentlicht: Birmingham PACKT Publishing 2017
    “… Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your …”
    Volltext
    E-Book Buch
  7. 7
  8. 8

    Hands-on Data Science and Python Machine Learning von Kane Frank

    ISBN: 9781787280748, 1787280748
    Veröffentlicht: Packt Publishing 2017
    “… them. Based on author successful data science course, this book empowers you to conduct data analysis and perform efficient machine learning using Python …”
    Volltext
    E-Book
  9. 9

    Python for Everyone: Learn and polish your coding skills in Python (English Edition) von Saurabh Chandrakar, Dr. Nilesh Bhaskarrao Bahadure

    ISBN: 9789355518170, 935551817X
    Veröffentlicht: Los Angeles BPB Publications 2023
    “… ? Get familiar with the core and advanced Python concepts. ? Work with the most used Data Science libraries in Python …”
    Volltext
    E-Book
  10. 10

    TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning von Pérez-García, Fernando, Sparks, Rachel, Ourselin, Sébastien

    ISSN: 0169-2607, 1872-7565, 1872-7565
    Veröffentlicht: Elsevier B.V 01.09.2021
    Veröffentlicht in Computer methods and programs in biomedicine (01.09.2021)
    “… •Open-source Python library for preprocessing, augmentation and sampling of medical images for deep learning …”
    Volltext
    Journal Article
  11. 11

    ZMPY3D: accelerating protein structure volume analysis through vectorized 3D Zernike moments and Python-based GPU integration von Lai, Jhih-Siang, Burley, Stephen K, Duarte, Jose M

    ISSN: 2635-0041, 2635-0041
    Veröffentlicht: England Oxford University Press 2024
    Veröffentlicht in Bioinformatics advances (2024)
    “… As the volume of experimental and computationally-predicted protein structure information continues to increase, structural biology has become a “big data …”
    Volltext
    Journal Article
  12. 12

    zeus: a python implementation of ensemble slice sampling for efficient Bayesian parameter inference von Karamanis, Minas, Beutler, Florian, Peacock, John A

    ISSN: 0035-8711, 1365-2966, 1365-2966
    Veröffentlicht: London Oxford University Press 01.12.2021
    Veröffentlicht in Monthly notices of the Royal Astronomical Society (01.12.2021)
    “… ABSTRACT We introduce zeus, a well-tested Python implementation of the Ensemble Slice Sampling (ESS …”
    Volltext
    Journal Article
  13. 13

    Efficient access to qualitative data: a case of MD&A analysis from 10-K with Python via SEC's API von Lee, Joo Hyung, Lee, Seung Jae

    ISSN: 1350-4851, 1466-4291
    Veröffentlicht: London Routledge 15.12.2023
    Veröffentlicht in Applied economics letters (15.12.2023)
    “… : using Python with 10-K filings via the U.S. Securities and Exchange Commission's application programming interface, we show how to broaden the source of data available for research …”
    Volltext
    Journal Article
  14. 14

    Efficient Multiple Imputation for Diverse Data in Python and R : MIDASpy and rMIDAS von Lall, Ranjit, Robinson, Thomas

    ISSN: 1548-7660, 1548-7660
    Veröffentlicht: Foundation for Open Access Statistics 01.10.2023
    Veröffentlicht in Journal of statistical software (01.10.2023)
    “… This paper introduces software packages for efficiently imputing missing data using deep learning methods in Python (MIDASpy) and R (rMIDAS …”
    Volltext
    Journal Article
  15. 15

    HiPy: Extracting High-Level Semantics from Python Code for Data Processing von Jungmair, Michael, Engelke, Alexis, Giceva, Jana

    ISSN: 2475-1421, 2475-1421
    Veröffentlicht: New York, NY, USA ACM 08.10.2024
    Veröffentlicht in Proceedings of ACM on programming languages (08.10.2024)
    “… Data science workloads frequently include Python code, but Python's dynamic nature makes efficient execution hard …”
    Volltext
    Journal Article
  16. 16

    Omilayers: a Python package for efficient data management to support multi-omic analysis von Kioroglou, Dimitrios

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 06.02.2025
    Veröffentlicht in BMC bioinformatics (06.02.2025)
    “… Multi-omic integration involves the management of diverse omic datasets. Conducting an effective analysis of these datasets necessitates a data management …”
    Volltext
    Journal Article
  17. 17

    PxBLAT: an efficient python binding library for BLAT von Li, Yangyang, Yang, Rendong

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 19.06.2024
    Veröffentlicht in BMC bioinformatics (19.06.2024)
    “… Background With the surge in genomic data driven by advancements in sequencing technologies, the demand for efficient bioinformatics tools for sequence analysis has become paramount …”
    Volltext
    Journal Article
  18. 18
  19. 19

    PecanPy: a fast, efficient and parallelized Python implementation of node2vec von Liu, Renming, Krishnan, Arjun

    ISSN: 1367-4803, 1367-4811, 1367-4811
    Veröffentlicht: England Oxford University Press 11.10.2021
    Veröffentlicht in Bioinformatics (Oxford, England) (11.10.2021)
    “… We have developed PecanPy, a new Python implementation of node2vec that uses cache-optimized compact graph data structures and precomputing/parallelization to result in fast, high-quality node …”
    Volltext
    Journal Article
  20. 20

    easySCF: a tool for enhancing interoperability between R and Python for efficient single-cell data analysis von Zhang, Haoyun, Zhang, Wentao, Zhao, Shuai, Xu, Guangyu, Shen, Yi, Jiang, Feng, Qin, An, Cui, Lei

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 28.11.2024
    Veröffentlicht in Bioinformatics (Oxford, England) (28.11.2024)
    “… Summary This study introduces easySCF, a tool designed to enhance the interoperability of single-cell data between the two major bioinformatics platforms, R and Python …”
    Volltext
    Journal Article