Suchergebnisse - Dynamic graph convolutional autoencoder

Andere Suchmöglichkeiten:

  1. 1

    Dynamic graph convolutional autoencoder with node-attribute-wise attention for kidney and tumor segmentation from CT volumes von Xuan, Ping, Cui, Hui, Zhang, Hongda, Zhang, Tiangang, Wang, Linlin, Nakaguchi, Toshiya, Duh, Henry B.L.

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Amsterdam Elsevier B.V 25.01.2022
    Veröffentlicht in Knowledge-based systems (25.01.2022)
    “… We propose a novel dynamic graph convolution (DGC) autoencoder with node-attribute-wise attention (NodeAttri-Attention …”
    Volltext
    Journal Article
  2. 2

    Drug-target interaction prediction based on graph convolutional autoencoder with dynamic weighting residual GCN von Zeng, Ming, Wang, Min, Xie, Fuqiang, Ji, Zhiwei

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 29.07.2025
    Veröffentlicht in BMC bioinformatics (29.07.2025)
    “… of network’s representation capabilities. Results In this paper, we propose a graph convolutional autoencoder model, named DDGAE, for DTIs prediction …”
    Volltext
    Journal Article
  3. 3
  4. 4

    GDGC-AE: A New Approach to Mechanical Anomaly Detection Based on Graph Convolutional Networks and Autoencoders von Zhang, Mingzhe, Su, Zhengchang, Hao, Pengyuan, Lin, Zesheng, Wang, Huaqing, Song, Liuyang

    Veröffentlicht: IEEE 31.10.2024
    “… In this paper, a global dynamic graph convolutional autoencoder (GDGC-AE) model based on Chebyshev convolution is proposed to cope with the above problems …”
    Volltext
    Tagungsbericht
  5. 5

    Seismic damage identification by graph convolutional autoencoder using adjacency matrix based on structural modes von Kim, Minkyu, Song, Junho

    ISSN: 0098-8847, 1096-9845
    Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.02.2024
    Veröffentlicht in Earthquake engineering & structural dynamics (01.02.2024)
    “… ‐time damage identification by a graph convolutional autoencoder (GCAE) based on seismic responses of the structural system …”
    Volltext
    Journal Article
  6. 6

    Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning von Wang, Bo, Wu, Peilong, Du, Xiaoxin, Zhang, Chunyu, Fu, Shanshan, Sun, Tang, Yang, Xue

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Veröffentlicht: England Elsevier Ltd 01.12.2025
    Veröffentlicht in Computational biology and chemistry (01.12.2025)
    “… MVGCVAE is the first model to synergistically integrate multi-view graph convolutional networks (GCNs …”
    Volltext
    Journal Article
  7. 7

    Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series von Miele, Eric Stefan, Bonacina, Fabrizio, Corsini, Alessandro

    ISSN: 2666-5468, 2666-5468
    Veröffentlicht: Elsevier Ltd 01.05.2022
    Veröffentlicht in Energy and AI (01.05.2022)
    “… We introduce a promising neural architecture, namely a Graph Convolutional Autoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph …”
    Volltext
    Journal Article
  8. 8

    A Novel Unsupervised Structural Damage Detection Method Based on TCN-GAT Autoencoder von Ni, Yanchun, Jin, Qiyuan, Hu, Rui

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 03.11.2025
    Veröffentlicht in Sensors (Basel, Switzerland) (03.11.2025)
    “… This paper proposes an autoencoder model integrating Temporal Convolutional Networks (TCN) and Graph Attention Networks (GAT …”
    Volltext
    Journal Article
  9. 9

    Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics von Massegur, David, Da Ronch, Andrea

    ISSN: 0889-9746
    Veröffentlicht: Elsevier Ltd 01.12.2024
    Veröffentlicht in Journal of fluids and structures (01.12.2024)
    “… This work presents a geometric-deep-learning multi-mesh autoencoder framework to predict the spatial and temporal evolution of aerodynamic loads for a finite-span wing undergoing different types of motion …”
    Volltext
    Journal Article
  10. 10

    Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting von Khodayar, Mahdi, Mohammadi, Saeed, Khodayar, Mohammad E., Wang, Jianhui, Liu, Guangyi

    ISSN: 1949-3029, 1949-3037
    Veröffentlicht: Piscataway IEEE 01.04.2020
    Veröffentlicht in IEEE transactions on sustainable energy (01.04.2020)
    “… This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation …”
    Volltext
    Journal Article
  11. 11

    Predicting transonic flowfields in non–homogeneous unstructured grids using autoencoder graph convolutional networks von Immordino, Gabriele, Vaiuso, Andrea, Da Ronch, Andrea, Righi, Marcello

    ISSN: 0021-9991
    Veröffentlicht: Elsevier Inc 01.03.2025
    Veröffentlicht in Journal of computational physics (01.03.2025)
    “… Our approach leverages geometric deep learning, specifically through the use of an autoencoder architecture built on graph convolutional networks …”
    Volltext
    Journal Article
  12. 12

    iCircDA-NEAE: Accelerated attribute network embedding and dynamic convolutional autoencoder for circRNA-disease associations prediction von Yuan, Lin, Zhao, Jiawang, Shen, Zhen, Zhang, Qinhu, Geng, Yushui, Zheng, Chun-Hou, Huang, De-Shuang

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 01.08.2023
    Veröffentlicht in PLoS computational biology (01.08.2023)
    “… Accumulating evidence suggests that circRNAs play crucial roles in human diseases. CircRNA-disease association prediction is extremely helpful in understanding …”
    Volltext
    Journal Article
  13. 13

    AI-based clinical assessment of optic nerve head robustness superseding biomechanical testing von Braeu, Fabian A, Chuangsuwanich, Thanadet, Tun, Tin A, Perera, Shamira, Husain, Rahat, Thiery, Alexandre H, Aung, Tin, Barbastathis, George, Girard, Michaël J A

    ISSN: 0007-1161, 1468-2079, 1468-2079
    Veröffentlicht: BMA House, Tavistock Square, London, WC1H 9JR BMJ Publishing Group Ltd 01.02.2024
    Veröffentlicht in British journal of ophthalmology (01.02.2024)
    “… Background/aimsTo use artificial intelligence (AI) to: (1) exploit biomechanical knowledge of the optic nerve head (ONH) from a relatively large population; …”
    Volltext
    Journal Article
  14. 14

    Graph convolutional multi-mesh autoencoder for steady transonic aircraft aerodynamics von Massegur, David, Da Ronch, Andrea

    ISSN: 2632-2153, 2632-2153
    Veröffentlicht: Bristol IOP Publishing 01.06.2024
    Veröffentlicht in Machine learning: science and technology (01.06.2024)
    “… Calculating aerodynamic loads around an aircraft using computational fluid dynamics …”
    Volltext
    Journal Article
  15. 15

    Graph autoencoder with mirror temporal convolutional networks for traffic anomaly detection von Ren, Zhiyu, Li, Xiaojie, Peng, Jing, Chen, Ken, Tan, Qushan, Wu, Xi, Shi, Canghong

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 13.01.2024
    Veröffentlicht in Scientific reports (13.01.2024)
    “… In this paper, we propose a mirror temporal graph autoencoder (MTGAE) framework to explore anomalies and capture unseen nodes and the spatiotemporal correlation between nodes in the traffic network …”
    Volltext
    Journal Article
  16. 16

    Graph-informed convolutional autoencoder to classify brain responses during sleep von Zakeri, Sahar, Makouei, Somayeh, Danishvar, Sebelan

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Veröffentlicht: Switzerland Frontiers Media S.A 28.04.2025
    Veröffentlicht in Frontiers in neuroscience (28.04.2025)
    “… Automated machine-learning algorithms that analyze biomedical signals have been used to identify sleep patterns and health issues. However, their performance …”
    Volltext
    Journal Article
  17. 17

    Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder von Jiang, Junhao, Zuo, Yi, Li, Zhiyuan

    ISSN: 0951-8320
    Veröffentlicht: Elsevier Ltd 01.03.2026
    Veröffentlicht in Reliability engineering & system safety (01.03.2026)
    “… of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN …”
    Volltext
    Journal Article
  18. 18

    ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising von Liu, Han, Liao, Peixi, Chen, Hu, Zhang, Yi

    ISSN: 2156-7085, 2156-7085
    Veröffentlicht: United States Optica Publishing Group 01.11.2022
    Veröffentlicht in Biomedical optics express (01.11.2022)
    “… and a window-based graph attention convolutional network that combines static and dynamic attention modules to explore non-local self-similarity …”
    Volltext
    Journal Article
  19. 19

    Spatio-temporal graph convolutional autoencoder for transonic wing pressure distribution forecasting von Immordino, Gabriele, Vaiuso, Andrea, Da Ronch, Andrea, Righi, Marcello

    ISSN: 1270-9638
    Veröffentlicht: Elsevier Masson SAS 01.10.2025
    Veröffentlicht in Aerospace science and technology (01.10.2025)
    “… This study presents a framework for predicting unsteady transonic wing pressure distributions due to pitch and plunge movement, integrating an autoencoder architecture with graph convolutional …”
    Volltext
    Journal Article
  20. 20

    PT-TDGCN: Pre-Trained Trend-Aware Dynamic Graph Convolutional Network for Traffic Flow Prediction von Yang, Hanqing, Wei, Sen, Wang, Yuanqing

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 03.11.2025
    Veröffentlicht in Sensors (Basel, Switzerland) (03.11.2025)
    “… To address these issues, we propose the Pre-trained Trend-aware Dynamic Graph Convolutional Network (PT-TDGCN …”
    Volltext
    Journal Article