Suchergebnisse - Digital Signal Processing with Kernel Methods
-
1
Digital Signal Processing with Kernel Methods
ISBN: 9781118611791, 1118611799Veröffentlicht: Hoboken, N.J Wiley 2018“… to communications, multimedia, and biomedical engineering systems </b> <p><i> Digital Signal Processing with Kernel Methods</i> …”
Volltext
E-Book Buch -
2
Built-in self-scaling method for kernel-based estimation in the presence of nonlinear distortion
ISSN: 1051-2004Veröffentlicht: Elsevier Inc 01.12.2025Veröffentlicht in Digital signal processing (01.12.2025)“… extension of the standard kernel-based (KB) formulation into the built-in self-scaling (BS) method. Theoretical derivation proves that the BS method can preserve the property of harmonic suppression in perturbation signals …”
Volltext
Journal Article -
3
ECG biometric authentication based on non-fiducial approach using kernel methods
ISSN: 1051-2004, 1095-4333Veröffentlicht: Elsevier Inc 01.05.2016Veröffentlicht in Digital signal processing (01.05.2016)“… ) in conjunction with linear dimension reduction methods are used. This paper proposes a new non-fiducial framework for ECG biometric verification using kernel methods …”
Volltext
Journal Article -
4
Half-quadratic Student's t-based kernel adaptive filter based on multikernel Nyström method
ISSN: 1051-2004Veröffentlicht: Elsevier Inc 01.09.2025Veröffentlicht in Digital signal processing (01.09.2025)“… Kernel adaptive filters (KAFs) are effective for nonlinear signal processing. However, the performance of KAFs based on the minimum mean square error (MMSE …”
Volltext
Journal Article -
5
A low-rate identification method for digital predistorters based on Volterra kernel interpolation
ISSN: 0925-1030, 1573-1979Veröffentlicht: Boston Springer US 01.08.2008Veröffentlicht in Analog integrated circuits and signal processing (01.08.2008)“… (digital predistortion) and mixed signal simulations require system models at a higher sampling rate than Nyquist …”
Volltext
Journal Article -
6
Kernel Regression for Image Processing and Reconstruction
ISSN: 1057-7149, 1941-0042Veröffentlicht: New York, NY IEEE 01.02.2007Veröffentlicht in IEEE transactions on image processing (01.02.2007)“… In this paper, we make contact with the field of nonparametric statistics and present a development and generalization of tools and results for use in image processing and reconstruction …”
Volltext
Journal Article -
7
Sparse Representation With Kernels
ISSN: 1057-7149, 1941-0042, 1941-0042Veröffentlicht: New York, NY IEEE 01.02.2013Veröffentlicht in IEEE transactions on image processing (01.02.2013)“… Motivated by the fact that kernel trick can capture the nonlinear similarity of features, which helps in finding a sparse representation of nonlinear features, we propose kernel sparse representation (KSR …”
Volltext
Journal Article -
8
Processing Near Sensor Architecture in Mixed-Signal Domain With CMOS Image Sensor of Convolutional-Kernel-Readout Method
ISSN: 1549-8328, 1558-0806Veröffentlicht: New York IEEE 01.02.2020Veröffentlicht in IEEE transactions on circuits and systems. I, Regular papers (01.02.2020)“… In this paper, a processing near sensor architecture in mixed-signal domain with CMOS Image Sensor (CIS …”
Volltext
Journal Article -
9
Kernel adaptive filtering: a comprehensive introduction
ISBN: 9780470447536, 0470447532, 0470608587, 9780470608586, 9780470608593, 0470608595Veröffentlicht: Hoboken, N.J Wiley 2010“… Online learning from a signal processing perspective There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced …”
Volltext
E-Book Buch -
10
Robust Kernel Representation With Statistical Local Features for Face Recognition
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: New York, NY IEEE 01.06.2013Veröffentlicht in IEEE transaction on neural networks and learning systems (01.06.2013)“… classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF …”
Volltext
Journal Article -
11
Universal Blind Image Quality Assessment Metrics Via Natural Scene Statistics and Multiple Kernel Learning
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: New York, NY IEEE 01.12.2013Veröffentlicht in IEEE transaction on neural networks and learning systems (01.12.2013)“… Universal blind image quality assessment (IQA) metrics that can work for various distortions are of great importance for image processing systems …”
Volltext
Journal Article -
12
ViBe: A Universal Background Subtraction Algorithm for Video Sequences
ISSN: 1057-7149, 1941-0042, 1941-0042Veröffentlicht: New York, NY IEEE 01.06.2011Veröffentlicht in IEEE transactions on image processing (01.06.2011)“… This paper presents a technique for motion detection that incorporates several innovative mechanisms. For example, our proposed technique stores, for each …”
Volltext
Journal Article -
13
KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition
ISSN: 0162-8828, 1939-3539Veröffentlicht: Los Alamitos, CA IEEE 01.02.2005Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.02.2005)“… This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e …”
Volltext
Journal Article -
14
Multivariate online kernel density estimation with Gaussian kernels
ISSN: 0031-3203, 1873-5142Veröffentlicht: Kidlington Elsevier Ltd 01.10.2011Veröffentlicht in Pattern recognition (01.10.2011)“… We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE …”
Volltext
Journal Article -
15
Design of Mittag–Leffler Kernel-Based Fractional-Order Digital Filter Using Fractional Delay Interpolation
ISSN: 0278-081X, 1531-5878Veröffentlicht: New York Springer US 01.06.2022Veröffentlicht in Circuits, systems, and signal processing (01.06.2022)“… –Leffler kernel-based Atangana–Baleanu–Caputo (ABC) fractional-order digital filter (FODF) has been proposed. The design has been obtained by first numerically …”
Volltext
Journal Article -
16
Soft Margin Multiple Kernel Learning
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: New York, NY IEEE 01.05.2013Veröffentlicht in IEEE transaction on neural networks and learning systems (01.05.2013)“… Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels …”
Volltext
Journal Article -
17
A quantum Jensen–Shannon graph kernel for unattributed graphs
ISSN: 0031-3203, 1873-5142Veröffentlicht: Kidlington Elsevier Ltd 01.02.2015Veröffentlicht in Pattern recognition (01.02.2015)“… In this paper, we use the quantum Jensen–Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel …”
Volltext
Journal Article Tagungsbericht -
18
Dimensionality reduction by Mixed Kernel Canonical Correlation Analysis
ISSN: 0031-3203, 1873-5142Veröffentlicht: Kidlington Elsevier Ltd 01.08.2012Veröffentlicht in Pattern recognition (01.08.2012)“… In this paper, we propose a novel method named Mixed Kernel CCA (MKCCA) to achieve easy yet accurate implementation of dimensionality reduction …”
Volltext
Journal Article -
19
Online Kernel Principal Component Analysis: A Reduced-Order Model
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: Los Alamitos, CA IEEE 01.09.2012Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.09.2012)“… Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis and dimensionality reduction techniques, the principal component analysis …”
Volltext
Journal Article -
20
Anisotropic Gaussian kernel adaptive filtering by Lie-group dictionary learning
ISSN: 1932-6203, 1932-6203Veröffentlicht: United States Public Library of Science 14.08.2020Veröffentlicht in PloS one (14.08.2020)“… The present paper proposes a novel kernel adaptive filtering algorithm, where each Gaussian kernel is parameterized by a center vector and a symmetric positive definite (SPD …”
Volltext
Journal Article

