Suchergebnisse - Determining the number of clusters in a data set

  1. 1

    Effects of Resampling in Determining the Number of Clusters in a Data Set von Dangl, Rainer, Leisch, Friedrich

    ISSN: 0176-4268, 1432-1343
    Veröffentlicht: New York Springer US 01.10.2020
    Veröffentlicht in Journal of classification (01.10.2020)
    “… Using cluster validation indices is a widely applied method in order to detect the number of groups in a data set and as such a crucial step in the model validation process in clustering …”
    Volltext
    Journal Article
  2. 2

    NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set von Charrad, Malika, Ghazzali, Nadia, Boiteau, Véronique, Niknafs, Azam

    ISSN: 1548-7660, 1548-7660
    Veröffentlicht: University of California, Los Angeles 2014
    Veröffentlicht in Journal of statistical software (2014)
    “… quality of clusters, the degree with which a clustering scheme fits a specific data set and the optimal number of clusters in a partitioning …”
    Volltext
    Journal Article
  3. 3

    A Graph Theoretic Criterion for Determining the Number of Clusters in a Data Set von Krolak-Schwedt, Sabine, Eckes, Thomas

    ISSN: 0027-3171, 1532-7906
    Veröffentlicht: Fort Worth, TX Lawrence Erlbaum Associates, Inc 01.10.1992
    Veröffentlicht in Multivariate behavioral research (01.10.1992)
    “… This article is concerned with procedures for determining the number of clusters in a data set …”
    Volltext
    Journal Article
  4. 4

    Automatically Determining the Number of Clusters in Unlabeled Data Sets von Liang Wang, Leckie, C., Ramamohanarao, K., Bezdek, J.

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York, NY IEEE 01.03.2009
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.03.2009)
    “… In this paper we investigate a new method called DBE (dark block extraction) for automatically estimating the number of clusters in unlabeled data sets, which is based on an existing algorithm for visual assessment of cluster tendency (VAT …”
    Volltext
    Journal Article
  5. 5

    An Examination of Indexes for Determining the Number of Clusters in Binary Data Sets von Dimitriadou, Evgenia, Dolničar, Sara, Weingessel, Andreas

    ISSN: 0033-3123, 1860-0980
    Veröffentlicht: Heidelberg Springer 01.03.2002
    Veröffentlicht in Psychometrika (01.03.2002)
    “… The simulation includes 162 binary data sets that are clustered by two different algorithms and lead to recommendations on the number of clusters for each index under consideration. Index results are evaluated and their performance is compared and analyzed …”
    Volltext
    Journal Article
  6. 6

    A new validation index for determining the number of clusters in a data set von Haojun Sun, Shengrui Wang, Qingshan Jiang

    ISBN: 0780370449, 9780780370449
    ISSN: 1098-7576
    Veröffentlicht: IEEE 2001
    “… and detecting the best number of clusters for a given data set in practical applications. After a review of the relevant literature, we present the new validity function …”
    Volltext
    Tagungsbericht
  7. 7

    A New Similarity Measure and Its Use in Determining the Number of Clusters in a Multivariate Data Set von Vassiliou, A., Tambouratzis, D. G., Koutras, M. V., Bersimis, S.

    ISSN: 0361-0926, 1532-415X
    Veröffentlicht: Philadelphia, PA Taylor & Francis Group 31.12.2004
    Veröffentlicht in Communications in statistics. Theory and methods (31.12.2004)
    “… Krolak-Schwerdt and Eckes [Krolak-Schwerdt, S., Eckes, T. (1992). A graph theoretic criterion for determining the number of cluster in a data set. Multivariate Behav. Res. 27(4):541-565 …”
    Volltext
    Journal Article
  8. 8

    An automatic method to determine the number of clusters using decision-theoretic rough set von Yu, Hong, Liu, Zhanguo, Wang, Guoyin

    ISSN: 0888-613X, 1873-4731
    Veröffentlicht: Elsevier Inc 01.01.2014
    Veröffentlicht in International journal of approximate reasoning (01.01.2014)
    “… renewed interest in clustering as a tool for the analysis of large data sets in many fields. Determining the number of clusters in a data set is one of the most challenging and difficult problems in cluster analysis …”
    Volltext
    Journal Article
  9. 9

    A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set von Peng, Yi, Zhang, Yong, Kou, Gang, Shi, Yong

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 27.07.2012
    Veröffentlicht in PloS one (27.07.2012)
    “… Determining the number of clusters in a data set is an essential yet difficult step in cluster analysis …”
    Volltext
    Journal Article
  10. 10

    FCM-Based Model Selection Algorithms for Determining the Number of Clusters von Sun, Haojun, Wang, Shengrui, Jiang, Qingshan

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.10.2004
    Veröffentlicht in Pattern recognition (01.10.2004)
    “… After a brief review of the relevant literature, we present a new algorithm for determining the number of clusters in a given data set and a new validity index for measuring the “goodness” of clustering. Experimental results and comparisons are given to illustrate the performance of the new algorithm …”
    Volltext
    Journal Article
  11. 11

    MCS: A Method for Finding the Number of Clusters von Albatineh, Ahmed N., Niewiadomska-Bugaj, Magdalena

    ISSN: 0176-4268, 1432-1343
    Veröffentlicht: New York Springer-Verlag 01.07.2011
    Veröffentlicht in Journal of classification (01.07.2011)
    “… This paper proposes a maximum clustering similarity (MCS) method for determining the number of clusters in a data set by studying the behavior of similarity indices comparing two (of several) clustering methods …”
    Volltext
    Journal Article
  12. 12

    A new procedure to optimize the selection of groups in a classification tree: Applications for ecological data von Guidi, Lionel, Ibanez, Frédéric, Calcagno, Vincent, Beaugrand, Grégory

    ISSN: 0304-3800, 1872-7026
    Veröffentlicht: Amsterdam Elsevier B.V 24.02.2009
    Veröffentlicht in Ecological modelling (24.02.2009)
    “… The use of multiple measurements in taxonomic problems. Ann. Eugenic. 7, 179–188], (2) simulated data with predetermined numbers of clusters following Milligan and Cooper …”
    Volltext
    Journal Article
  13. 13

    Agglomerative Fuzzy K-Means Clustering Algorithm with Selection of Number of Clusters von Li, M.J., Ng, M.K., Cheung, Y.-m., Huang, J.Z.

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York, NY IEEE 01.11.2008
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.11.2008)
    “… Combined with cluster validation techniques, the new algorithm can determine the number of clusters in a data set, which is a well known problem in k-means clustering …”
    Volltext
    Journal Article
  14. 14

    Estimating the number of clusters in a numerical data set via quantization error modeling von Kolesnikov, Alexander, Trichina, Elena, Kauranne, Tuomo

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.03.2015
    Veröffentlicht in Pattern recognition (01.03.2015)
    “… We propose a new method for determining an optimal number of clusters in the data set. The method is based on parametric modeling of the quantization error …”
    Volltext
    Journal Article
  15. 15

    Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation von Zhou, KaiLe, Fu, Chao, Yang, ShanLin

    ISSN: 1674-733X, 1869-1919
    Veröffentlicht: Heidelberg Science China Press 01.11.2014
    Veröffentlicht in Science China. Information sciences (01.11.2014)
    “… Cluster validity index (CVI) is a kind of criterion function to validate the clustering results, thereby determining the optimal cluster number of a data set …”
    Volltext
    Journal Article
  16. 16

    A Novel Approach for Gaussian Mixture Model Clustering Based on Soft Computing Method von Gogebakan, Maruf

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2021
    Veröffentlicht in IEEE access (2021)
    “… Determining the number of clusters in a data set is a significant and difficult problem in cluster analysis …”
    Volltext
    Journal Article
  17. 17

    The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets von Stankiewicz, Kathryn H., Vasquez Kuntz, Kate L., Baums, Iliana B.

    ISSN: 1755-098X, 1755-0998, 1755-0998
    Veröffentlicht: England Wiley Subscription Services, Inc 01.04.2022
    Veröffentlicht in Molecular ecology resources (01.04.2022)
    “… If this finding holds for empirical data sets, conclusions about the scale of gene flow may have to be revised for a large number of studies …”
    Volltext
    Journal Article
  18. 18

    Determining the number of clusters using information entropy for mixed data von Liang, Jiye, Zhao, Xingwang, Li, Deyu, Cao, Fuyuan, Dang, Chuangyin

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Kidlington Elsevier Ltd 01.06.2012
    Veröffentlicht in Pattern recognition (01.06.2012)
    “… In cluster analysis, one of the most challenging and difficult problems is the determination of the number of clusters in a data set, which is a basic input parameter for most clustering algorithms …”
    Volltext
    Journal Article
  19. 19

    Fuzzy and hard clustering analysis for thyroid disease von Azar, Ahmad Taher, El-Said, Shaimaa Ahmed, Hassanien, Aboul Ella

    ISSN: 0169-2607, 1872-7565, 1872-7565
    Veröffentlicht: Kidlington Elsevier Ireland Ltd 01.07.2013
    Veröffentlicht in Computer methods and programs in biomedicine (01.07.2013)
    “… This paper proposes a comparison between hard and fuzzy clustering algorithms for thyroid diseases data set in order to find the optimal number of clusters …”
    Volltext
    Journal Article
  20. 20

    Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically von Bickel, David R.

    ISSN: 1367-4803, 1460-2059, 1367-4811
    Veröffentlicht: Oxford Oxford University Press 01.05.2003
    Veröffentlicht in Bioinformatics (01.05.2003)
    “… The measure can be made robust using a rank order correlation coefficient. A robust graphical method of summarizing the results of cluster analysis and a biological method of determining the number of clusters are also presented …”
    Volltext
    Journal Article