Suchergebnisse - Deep-learning algorithms for image classification

  1. 1

    The effects of visual congruence on increasing consumers’ brand engagement: An empirical investigation of influencer marketing on instagram using deep-learning algorithms for automatic image classification von Argyris, Young Anna, Wang, Zuhui, Kim, Yongsuk, Yin, Zhaozheng

    ISSN: 0747-5632, 1873-7692
    Veröffentlicht: Elmsford Elsevier Ltd 01.11.2020
    Veröffentlicht in Computers in human behavior (01.11.2020)
    “… Influencers are non-celebrity individuals who gain popularity on social media by posting visually attractive content (e.g., photos and videos) and by …”
    Volltext
    Journal Article
  2. 2

    ANALYSIS OF DEEP LEARNING ALGORITHMS FOR IMAGE CLASSIFICATION von Dhand, Geetika, Sheoran, Kavita, Jain, Rachna, Garg, Vaani, Malik, Shaily, Gupta, Koyel Datta, Kaur, Amandeep, Aggarwal, Nisha

    ISSN: 2620-2832, 2683-4111
    Veröffentlicht: University of Kragujevac 28.09.2025
    Veröffentlicht in Proceedings on engineering sciences (Online) (28.09.2025)
    “… Image classification is one of the most significant applications of Deep Learning models …”
    Volltext
    Journal Article
  3. 3

    Comparative Analysis of Deep Learning Algorithms for Image Classification von Chowdary, Ginjupalli Pranay, K, Rajakumar, Narendra Yalla, Sri Satya, Yadav, Varthala Charith, Kasetty, Sai Bhargav

    Veröffentlicht: IEEE 19.12.2024
    “… to the exponential rise in data volume, manual adjustment is no longer feasible or efficient. This difficulty has led to the adoption of deep learning algorithms, which automate …”
    Volltext
    Tagungsbericht
  4. 4

    An image classification deep-learning algorithm for shrapnel detection from ultrasound images von Snider, Eric J., Hernandez-Torres, Sofia I., Boice, Emily N.

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 19.05.2022
    Veröffentlicht in Scientific reports (19.05.2022)
    “… possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image analysis and diagnosis …”
    Volltext
    Journal Article
  5. 5
  6. 6

    Evaluating the generalizability of deep learning image classification algorithms to detect middle ear disease using otoscopy von Habib, Al-Rahim, Xu, Yixi, Bock, Kris, Mohanty, Shrestha, Sederholm, Tina, Weeks, William B., Dodhia, Rahul, Ferres, Juan Lavista, Perry, Chris, Sacks, Raymond, Singh, Narinder

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 01.04.2023
    Veröffentlicht in Scientific reports (01.04.2023)
    “… To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance …”
    Volltext
    Journal Article
  7. 7

    Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images von Bechelli, Solene, Delhommelle, Jerome

    ISSN: 2306-5354, 2306-5354
    Veröffentlicht: Switzerland MDPI AG 27.02.2022
    Veröffentlicht in Bioengineering (Basel) (27.02.2022)
    “… We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML …”
    Volltext
    Journal Article
  8. 8

    CNN/Bi‐LSTM‐based deep learning algorithm for classification of power quality disturbances by using spectrogram images von Özer, İlyas, Efe, Serhat Berat, Özbay, Harun

    ISSN: 2050-7038, 2050-7038
    Veröffentlicht: Hoboken John Wiley & Sons, Inc 01.12.2021
    “… This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN …”
    Volltext
    Journal Article
  9. 9

    Comparative analysis of image classification algorithms based on traditional machine learning and deep learning von Wang, Pin, Fan, En, Wang, Peng

    ISSN: 0167-8655, 1872-7344
    Veröffentlicht: Amsterdam Elsevier B.V 01.01.2021
    Veröffentlicht in Pattern recognition letters (01.01.2021)
    “… •Representative SVM and CNN algorithms in traditional machine learning and deep learning for research …”
    Volltext
    Journal Article
  10. 10

    A review of deep learning algorithms for computer vision systems in livestock von Borges Oliveira, Dario Augusto, Ribeiro Pereira, Luiz Gustavo, Bresolin, Tiago, Pontes Ferreira, Rafael Ehrich, Reboucas Dorea, Joao Ricardo

    ISSN: 1871-1413, 1878-0490
    Veröffentlicht: Elsevier B.V 01.11.2021
    Veröffentlicht in Livestock science (01.11.2021)
    “… •Greater adoption of deep learning algorithms for image classification.•The phenotype with greater interest was animal behavior …”
    Volltext
    Journal Article
  11. 11

    A survey of automated data augmentation algorithms for deep learning-based image classification tasks von Yang, Zihan, Sinnott, Richard O., Bailey, James, Ke, Qiuhong

    ISSN: 0219-1377, 0219-3116
    Veröffentlicht: London Springer London 01.07.2023
    Veröffentlicht in Knowledge and information systems (01.07.2023)
    “… In recent years, one of the most popular techniques in the computer vision community has been the deep learning technique …”
    Volltext
    Journal Article
  12. 12

    Image Classification Algorithm Based on Deep Learning-Kernel Function von Liu, Jun-e, An, Feng-Ping

    ISSN: 1058-9244, 1875-919X
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 2020
    Veröffentlicht in Scientific programming (2020)
    “… The deep learning model has a powerful learning ability, which integrates the feature extraction and classification process into a whole to complete the image classification test …”
    Volltext
    Journal Article
  13. 13

    Three‐dimensional dental image segmentation and classification using deep learning with tunicate swarm algorithm von Awari, Harshavardhan, Subramani, Neelakandan, Janagaraj, Avanija, Balasubramaniapillai Thanammal, Geetha, Thangarasu, Jackulin, Kohar, Rachna

    ISSN: 0266-4720, 1468-0394
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.06.2024
    Veröffentlicht in Expert systems (01.06.2024)
    “… Automated segmentation and classification of 3D dental images using advanced machine learning and deep learning (DL …”
    Volltext
    Journal Article
  14. 14

    Multi-class Image Classification Using Deep Learning Algorithm von Ezat, W A, Dessouky, M M, Ismail, N A

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.01.2020
    Veröffentlicht in Journal of physics. Conference series (01.01.2020)
    “… Classifying images is a complex problem in the field of computer vision. The deep learning algorithm is a computerized model simulates the human brain functions and operations …”
    Volltext
    Journal Article
  15. 15

    Training Ultrasound Image Classification Deep-Learning Algorithms for Pneumothorax Detection Using a Synthetic Tissue Phantom Apparatus von Boice, Emily N., Hernandez Torres, Sofia I., Knowlton, Zechariah J., Berard, David, Gonzalez, Jose M., Avital, Guy, Snider, Eric J.

    ISSN: 2313-433X, 2313-433X
    Veröffentlicht: Basel MDPI AG 11.09.2022
    Veröffentlicht in Journal of imaging (11.09.2022)
    “… Here, we detail the development of a dynamic synthetic tissue phantom model for PTX and its use in training image classification algorithms …”
    Volltext
    Journal Article
  16. 16

    BraNet: a mobil application for breast image classification based on deep learning algorithms von Jiménez-Gaona, Yuliana, Álvarez, María José Rodríguez, Castillo-Malla, Darwin, García-Jaen, Santiago, Carrión-Figueroa, Diana, Corral-Domínguez, Patricio, Lakshminarayanan, Vasudevan

    ISSN: 0140-0118, 1741-0444, 1741-0444
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
    Veröffentlicht in Medical & biological engineering & computing (01.09.2024)
    “… This study aims to develop an open-source mobile app named “BraNet” for 2D breast imaging segmentation and classification using deep learning algorithms …”
    Volltext
    Journal Article
  17. 17

    Feature Fusion Using Deep Learning Algorithms in Image Classification for Security Purposes by Random Weight Network von Kiran, Mustafa Servet, Seyfi, Gokhan, Yilmaz, Merve, Esme, Engin, Wang, Xizhao

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.08.2025
    Veröffentlicht in Applied sciences (01.08.2025)
    “… Automated threat detection in X-ray security imagery is a critical yet challenging task, where conventional deep learning models often struggle with low accuracy and overfitting …”
    Volltext
    Journal Article
  18. 18

    ForestResNet: A Deep Learning Algorithm for Forest Image Classification von Tang, Yongqing, Feng, Hao, Chen, Junyan, Chen, Yuan

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: IOP Publishing 01.09.2021
    Veröffentlicht in Journal of physics. Conference series (01.09.2021)
    “… ]. Therefore, early detection of forest fires is significant for forest fire protection. The application of deep learning to the classification of smoke and fire in forest images can detect forest conditions more accurately …”
    Volltext
    Journal Article
  19. 19

    CRAT: Advanced transformer-based deep learning algorithms in OCT image classification von Yang, Mingming, Du, Junhui, Lv, Ruichan

    ISSN: 1746-8094
    Veröffentlicht: Elsevier Ltd 01.06.2025
    Veröffentlicht in Biomedical signal processing and control (01.06.2025)
    “… In this research, we developed a transformer-based deep learning algorithm named Class-Re-Attention Transformers (CRAT …”
    Volltext
    Journal Article
  20. 20

    Improved deep learning image classification algorithm based on Swin Transformer V2 von Wei, Jiangshu, Chen, Jinrong, Wang, Yuchao, Luo, Hao, Li, Wujie

    ISSN: 2376-5992, 2376-5992
    Veröffentlicht: United States PeerJ. Ltd 30.10.2023
    Veröffentlicht in PeerJ. Computer science (30.10.2023)
    “… While convolutional operation effectively extracts local features, their limited receptive fields make it challenging to capture global dependencies …”
    Volltext
    Journal Article