Suchergebnisse - Deep sparse autoencoder network

  1. 1

    Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network von Wang, Yan-Bin, You, Zhu-Hong, Li, Xiao, Jiang, Tong-Hai, Chen, Xing, Zhou, Xi, Wang, Lei

    ISSN: 1742-2051, 1742-2051
    Veröffentlicht: England 27.06.2017
    Veröffentlicht in Molecular bioSystems (27.06.2017)
    “… ). Then, these extracted features were reconstructed using the stacked autoencoder. Finally, a novel …”
    Weitere Angaben
    Journal Article
  2. 2

    A Fuzzy Deep Neural Network With Sparse Autoencoder for Emotional Intention Understanding in Human-Robot Interaction von Chen, Luefeng, Su, Wanjuan, Wu, Min, Pedrycz, Witold, Hirota, Kaoru

    ISSN: 1063-6706, 1941-0034
    Veröffentlicht: New York IEEE 01.07.2020
    Veröffentlicht in IEEE transactions on fuzzy systems (01.07.2020)
    “… A fuzzy deep neural network with sparse autoencoder (FDNNSA) is proposed for intention understanding based on human emotions and identification information (i.e …”
    Volltext
    Journal Article
  3. 3

    Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction von Chen, Luefeng, Zhou, Mengtian, Su, Wanjuan, Wu, Min, She, Jinhua, Hirota, Kaoru

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.02.2018
    Veröffentlicht in Information sciences (01.02.2018)
    “… However, DNN suffers from problems of learning efficiency and computational complexity. To address these problems, deep sparse autoencoder network (DSAN …”
    Volltext
    Journal Article
  4. 4

    Reliable Fault Diagnosis of Rotary Machine Bearings Using a Stacked Sparse Autoencoder-Based Deep Neural Network von Sohaib, Muhammad, Kim, Jong-Myon

    ISSN: 1070-9622, 1875-9203
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
    Veröffentlicht in Shock and vibration (01.01.2018)
    “… In this study, using complex envelope spectra and stacked sparse autoencoder …”
    Volltext
    Journal Article
  5. 5

    Robust approach for AMC in frequency selective fading scenarios using unsupervised sparse-autoencoder-based deep neural network von Shah, Maqsood Hussain, Dang, Xiaoyu

    ISSN: 1751-8628, 1751-8636
    Veröffentlicht: The Institution of Engineering and Technology 05.03.2019
    Veröffentlicht in IET communications (05.03.2019)
    “… Application of deep learning in the area of automatic modulation classification (AMC) is still evolving. An unsupervised sparse-autoencoder-based deep neural network …”
    Volltext
    Journal Article
  6. 6

    Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network von Chen, Zhuyun, Li, Weihua

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 01.07.2017
    “… First, time-domain and frequency-domain features are extracted from the different sensor signals, and then these features are input into multiple two-layer sparse autoencoder (SAE …”
    Volltext
    Journal Article
  7. 7

    Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery von Qi, Yumei, Shen, Changqing, Wang, Dong, Shi, Juanjuan, Jiang, Xingxing, Zhu, Zhongkui

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2017
    Veröffentlicht in IEEE access (01.01.2017)
    “… Thus, a stacked sparse autoencoder (SAE)-based machine fault diagnosis method is proposed in this paper …”
    Volltext
    Journal Article
  8. 8

    EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder von Liu, Junxiu, Wu, Guopei, Luo, Yuling, Qiu, Senhui, Yang, Su, Li, Wei, Bi, Yifei

    ISSN: 1662-5137, 1662-5137
    Veröffentlicht: Switzerland Frontiers Media S.A 02.09.2020
    Veröffentlicht in Frontiers in systems neuroscience (02.09.2020)
    “… ), Sparse Autoencoder (SAE), and Deep Neural Network (DNN) together. In the proposed network, the features extracted by the CNN are first sent to SAE for encoding and decoding …”
    Volltext
    Journal Article
  9. 9

    Deep network approach with stacked sparse autoencoders in detection of DDoS attacks on SDN-based VANET von Polat, Huseyin, Turkoglu, Muammer, Polat, Onur

    ISSN: 1751-8628, 1751-8636
    Veröffentlicht: The Institution of Engineering and Technology 01.12.2020
    Veröffentlicht in IET communications (01.12.2020)
    “… In this study, the stacked sparse autoencoder (SSAE) + Softmax classifier deep network model is proposed to detect DDoS attacks targeting SDN-based VANETs …”
    Volltext
    Journal Article
  10. 10

    Enhancing accuracy of prediction of critical heat flux in Circular channels by ensemble of deep sparse autoencoders and deep neural Networks von Zubair Khalid, Rehan, Ahmed, Ibrahim, Ullah, Atta, Zio, Enrico, Khan, Asifullah

    ISSN: 0029-5493, 1872-759X
    Veröffentlicht: Elsevier B.V 01.12.2024
    Veröffentlicht in Nuclear engineering and design (01.12.2024)
    “… •A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed …”
    Volltext
    Journal Article
  11. 11

    A hybrid Intrusion Detection System based on Sparse autoencoder and Deep Neural Network von Narayana Rao, K., Venkata Rao, K., P.V.G.D., Prasad Reddy

    ISSN: 0140-3664
    Veröffentlicht: Elsevier B.V 01.12.2021
    Veröffentlicht in Computer communications (01.12.2021)
    “… In the first stage, the unsupervised Sparse autoencoder (SAE) with smoothed l1 regularization …”
    Volltext
    Journal Article
  12. 12

    Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network von Han, Zhezhe, Hossain, Md. Moinul, Wang, Yuwei, Li, Jian, Xu, Chuanlong

    ISSN: 0306-2619, 1872-9118
    Veröffentlicht: Elsevier Ltd 01.02.2020
    Veröffentlicht in Applied energy (01.02.2020)
    “… •A novel deep learning model is established for predicting combustion stability.•Automatic generation of combustion stability label is achieved …”
    Volltext
    Journal Article
  13. 13

    Predicting potential microbe-disease associations based on heterogeneous graph attention network and deep sparse autoencoder von Wang, Bo, Zhao, Wenlong, Du, Xiaoxin, Zhang, Jianfei, Zhang, Chunyu, Wang, Liping, He, Yang

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.05.2025
    Veröffentlicht in Engineering applications of artificial intelligence (01.05.2025)
    “… We propose a computational framework called graph attention convolutional deep sparse autoencoder microbe-disease association (GCDSAEMDA …”
    Volltext
    Journal Article
  14. 14

    SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network von Jiang, Han-Jing, Huang, Yu-An, You, Zhu-Hong

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 18.03.2020
    Veröffentlicht in Scientific reports (18.03.2020)
    “… In this work, we present a novel computational model combining sparse auto-encoder and rotation forest (SAEROF …”
    Volltext
    Journal Article
  15. 15

    ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data von Almuqhim, Fahad, Saeed, Fahad

    ISSN: 1662-5188, 1662-5188
    Veröffentlicht: Switzerland Frontiers Research Foundation 08.04.2021
    Veröffentlicht in Frontiers in computational neuroscience (08.04.2021)
    “… We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features …”
    Volltext
    Journal Article
  16. 16

    Breath analysis based early gastric cancer classification from deep stacked sparse autoencoder neural network von Aslam, Muhammad Aqeel, Xue, Cuili, Chen, Yunsheng, Zhang, Amin, Liu, Manhua, Wang, Kan, Cui, Daxiang

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 17.02.2021
    Veröffentlicht in Scientific reports (17.02.2021)
    “… In this study, we proposed a new method for feature extraction using a stacked sparse autoencoder to extract the discriminative features from the unlabeled data of breath samples …”
    Volltext
    Journal Article
  17. 17

    Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network von Xu, Lin, Cao, Maoyong, Song, Baoye, Zhang, Jiansheng, Liu, Yurong, Alsaadi, Fuad E.

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 15.10.2018
    Veröffentlicht in Neurocomputing (Amsterdam) (15.10.2018)
    “… This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep neural network (SAE-based DNN …”
    Volltext
    Journal Article
  18. 18

    A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks von Yang, Zhe, Baraldi, Piero, Zio, Enrico

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.04.2022
    Veröffentlicht in Reliability engineering & system safety (01.04.2022)
    “… •A single run-to-failure trajectory is enough to pre-train the deep neural network.•The computational burden of deep neural network hyperparameter setting is reduced …”
    Volltext
    Journal Article
  19. 19

    PEMFC Residual Life Prediction Using Sparse Autoencoder-Based Deep Neural Network von Liu, Jiawei, Li, Qi, Han, Ying, Zhang, Guorui, Meng, Xiang, Yu, Jiaxi, Chen, Weirong

    ISSN: 2332-7782, 2577-4212, 2332-7782
    Veröffentlicht: Piscataway IEEE 01.12.2019
    Veröffentlicht in IEEE transactions on transportation electrification (01.12.2019)
    “… ) under dynamic operating conditions, this article proposes a PEMFC RUL forecast technique based on the sparse autoencoder (SAE …”
    Volltext
    Journal Article
  20. 20

    Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed von Zhang, Yu-Dong, Zhang, Yin, Hou, Xiao-Xia, Chen, Hong, Wang, Shui-Hua

    ISSN: 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.05.2018
    Veröffentlicht in Multimedia tools and applications (01.05.2018)
    “… we developed a seven-layer deep neural network (DNN), which includes one input layer, four sparse autoencoder layers, one softmax layer, and one output layer …”
    Volltext
    Journal Article