Suchergebnisse - Deep learning kernel ELM Autoencoder

  1. 1

    Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting von Krishna Rayi, Vijaya, Mishra, S.P., Naik, Jyotirmayee, Dash, P.K.

    ISSN: 0360-5442, 1873-6785
    Veröffentlicht: Oxford Elsevier Ltd 01.04.2022
    Veröffentlicht in Energy (Oxford) (01.04.2022)
    “… ) and Deep learning mixed Kernel ELM (MKELM) Autoencoder (AE) has been presented for precise prediction of wind power …”
    Volltext
    Journal Article
  2. 2

    Hessenberg Elm Autoencoder Kernel For Deep Learning von ALTAN, Gokhan, KUTLU, Yakup

    ISSN: 2548-0391, 2548-0391
    Veröffentlicht: 30.08.2018
    “… Deep Learning (DL) is an effective way that reveals on computation capability and advantage of the hidden layer in the network models …”
    Volltext
    Journal Article
  3. 3

    Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting

    ISSN: 0972-6721, 1875-9297
    Veröffentlicht: New Delhi The Energy and Resources Institute 01.04.2022
    Veröffentlicht in TERI information digest on energy and environment (01.04.2022)
    Volltext
    Journal Article
  4. 4

    Detecting Fraudulent Transactions Using Stacked Autoencoder Kernel ELM Optimized by the Dandelion Algorithm von El Hlouli, Fatima Zohra, Riffi, Jamal, Sayyouri, Mhamed, Mahraz, Mohamed Adnane, Yahyaouy, Ali, El Fazazy, Khalid, Tairi, Hamid

    ISSN: 0718-1876, 0718-1876
    Veröffentlicht: Curicó MDPI AG 01.11.2023
    “… To resolve this issue there is a need for reliable real-time fraud detection technologies. This research introduced an innovative method called stacked autoencoder kernel extreme learning machine optimized by the dandelion algorithm (S-AEKELM-DA …”
    Volltext
    Journal Article
  5. 5

    A novel deep output kernel learning method for bearing fault structural diagnosis von Mao, Wentao, Feng, Wushi, Liang, Xihui

    ISSN: 0888-3270, 1096-1216
    Veröffentlicht: Berlin Elsevier Ltd 15.02.2019
    Veröffentlicht in Mechanical systems and signal processing (15.02.2019)
    “… •We propose a new deep learning method to conduct structural diagnosis of multiple bearing faults …”
    Volltext
    Journal Article
  6. 6

    Multi‐objective auto‐encoder deep learning‐based stack switching scheme for improved battery life using error prediction of wind‐battery storage microgrid von Mishra, Sthita Prajna, Krishna Rayi, Vijaya, Dash, Pradipta Kishore, Bisoi, Ranjeeta

    ISSN: 0363-907X, 1099-114X
    Veröffentlicht: Chichester, UK John Wiley & Sons, Inc 01.11.2021
    Veröffentlicht in International journal of energy research (01.11.2021)
    “… Summary For any wind power generation system, battery energy storage is a suitable backup power unit for ensuring greater functionality by compensating the …”
    Volltext
    Journal Article
  7. 7

    Processes soft modeling based on stacked autoencoders and wavelet extreme learning machine for aluminum plant-wide application von Lei, Yongxiang, Karimi, Hamid Reza, Cen, Lihui, Chen, Xiaofang, Xie, Yongfang

    ISSN: 0967-0661, 1873-6939
    Veröffentlicht: Elsevier Ltd 01.03.2021
    Veröffentlicht in Control engineering practice (01.03.2021)
    “… First, a stacked autoencoder (SAE) is used to extract the deep features. Then, a top-layer extreme learning machine (ELM …”
    Volltext
    Journal Article
  8. 8

    An adaptive hierarchical hybrid kernel ELM optimized by aquila optimizer algorithm for bearing fault diagnosis von Yan, Hao, Shang, Liangliang, Chen, Wan, Jiang, Mengyao, lu, Tianqi, Li, Fei

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 08.04.2025
    Veröffentlicht in Scientific reports (08.04.2025)
    “… ) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM …”
    Volltext
    Journal Article
  9. 9

    Stacked autoencoder based deep random vector functional link neural network for classification von Katuwal, Rakesh, Suganthan, P.N.

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.12.2019
    Veröffentlicht in Applied soft computing (01.12.2019)
    “… Inspired by the better performance of RVFL over ELM, in this paper, we propose several deep RVFL variants by utilizing the framework of stacked autoencoders …”
    Volltext
    Journal Article
  10. 10

    Generative Autoencoder Kernels on Deep Learning for Brain Activity Analysis von ALTAN, Gokhan, KUTLU, Yakup

    ISSN: 2458-8989, 2458-8989
    Veröffentlicht: 10.10.2018
    Veröffentlicht in Natural and engineering sciences (10.10.2018)
    “… Deep Learning (DL) is a two-step classification model that consists feature learning, generating feature representations using unsupervised ways and the supervised learning stage at the last step of model using …”
    Volltext
    Journal Article
  11. 11

    Chapter three - Generalization performance of deep autoencoder kernels for identification of abnormalities on electrocardiograms von Altan, Gokhan, Kutlu, Yakup

    ISBN: 9780128197646, 9780128226087, 0128197641, 0128226080
    Veröffentlicht: Elsevier Inc 2020
    Veröffentlicht in Deep Learning for Data Analytics (2020)
    “… depending on the increase in the number of optimization parameters. This chapter addresses the problem of how to reduce the training time required for DL algorithms by combining theories in deep autoencoder kernels …”
    Volltext
    Buchkapitel
  12. 12

    Stock market prediction under a deep learning approach using Variational Autoencoder, and kernel extreme learning machine von Hemant, Parida, Ajaya Kumar, Kumari, Rina, Singh, Aru Ranjan, Bandyopadhyay, Anjan, Swain, Sujata

    Veröffentlicht: IEEE 13.12.2023
    “… In this work, the convolutional neural network (CNN) technique was implemented to extract features and a variational autoencoder (VAE) for predictions …”
    Volltext
    Tagungsbericht
  13. 13

    Software defect prediction based on stacked sparse denoising autoencoders and enhanced extreme learning machine von Zhang, Nana, Ying, Shi, Zhu, Kun, Zhu, Dandan

    ISSN: 1751-8806, 1751-8814
    Veröffentlicht: Wiley 01.02.2022
    Veröffentlicht in IET software (01.02.2022)
    “… ) and Extreme Learning Maching (ELM) optimised by Particle Swarm Optimisation (PSO) and another complementary Gravitational Search Algorithm (GSA …”
    Volltext
    Journal Article
  14. 14

    Generative Autoencoder Kernels on Deep Learning for Brain Activity Analysis von Altan, Gokhan, Kutlu, Yakup

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.01.2021
    Veröffentlicht in arXiv.org (21.01.2021)
    “… Deep Learning (DL) is a two-step classification model that consists feature learning, generating feature representations using unsupervised ways and the supervised learning stage at the last step of model using …”
    Volltext
    Paper
  15. 15

    Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm von Dash, P.K., Prasad, Eluri N.V.D.V., Jalli, Ravi Kumar, Mishra, S.P.

    ISSN: 0306-2619, 1872-9118
    Veröffentlicht: Elsevier Ltd 01.03.2022
    Veröffentlicht in Applied energy (01.03.2022)
    “… •A deep stacked autoencoder is used for extracting unsupervised features.•Kernel random vector functional link network is used for disturbance classification …”
    Volltext
    Journal Article
  16. 16

    Dynamic identification of coupler yaw angle of heavy haul locomotive: An optimal multi-task ELM-based method von Xie, Bo, Chen, Shiqian, Song, Peize, Ran, Xiangrui, Wang, Kaiyun

    ISSN: 0888-3270
    Veröffentlicht: Elsevier Ltd 15.02.2024
    Veröffentlicht in Mechanical systems and signal processing (15.02.2024)
    “… To address these issues, within this paper a multi-task deep multiple kernel extreme learning machine (MT-DMKELM …”
    Volltext
    Journal Article
  17. 17

    Deep Layer Kernel Sparse Representation Network for the Detection of Heart Valve Ailments from the Time-Frequency Representation of PCG Recordings von Acharya, U. Rajendra, Tripathy, R. K., Ponnalagu, R. N., Ghosh, Samit Kumar

    ISSN: 2314-6133, 2314-6141, 2314-6141
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 2020
    Veröffentlicht in BioMed research international (2020)
    “… In this paper, a time-frequency based deep layer kernel sparse representation network (DLKSRN) is proposed for the detection of various HVAs using PCG signals …”
    Volltext
    Journal Article
  18. 18

    A novel machine learning framework: cross transformer based optimization model for the detection and classification of brain tumor using clinical decision analysis von Mayuri, A. V. R., Maniraj, S. P., Duraisamy, M., Murthy, G. L. N., Garg, Kanika, Sangeetha, M.

    ISSN: 1868-8071, 1868-808X
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2025
    “… In order to rectify these problems, this work proposes a Cross Attention Transformer based Dragonfly Optimized Kernel Extreme Learning Machine method for accurate brain tumor detection and classification …”
    Volltext
    Journal Article
  19. 19

    MSCNE:Predict miRNA-Disease Associations Using Neural Network Based on Multi-Source Biological Information von Han, Genwei, Kuang, Zhufang, Deng, Lei

    ISSN: 1545-5963, 1557-9964, 1557-9964
    Veröffentlicht: New York IEEE 01.09.2022
    “… ) feature extractor and an extreme learning machine (ELM) classifier is proposed. Specifically, the semantic similarity of diseases, the gaussian interaction profile …”
    Volltext
    Journal Article
  20. 20

    Decision-making method for residual support force of hydraulic supports during pressurized moving under fragmented roof conditions in ultra-thin coal seams von ZHANG Chuanwei, ZHANG Gangqiang, LU Zhengxiong, LI Linyue, HE Zhengwei, GONG Lingxiao, HUANG Junfeng

    ISSN: 1671-251X
    Veröffentlicht: Editorial Department of Industry and Mine Automation 01.03.2025
    “… -thin coal seams and ensuring operational safety. To address this challenge, this study proposed a novel decision-making method based on a Deep Hybrid Kernel Extreme Learning Machine (DHKELM …”
    Volltext
    Journal Article