Suchergebnisse - Deep learning architectures and techniques; Recognition: detection

  1. 1

    Equalized Focal Loss for Dense Long-Tailed Object Detection von Li, Bo, Yao, Yongqiang, Tan, Jingru, Zhang, Gang, Yu, Fengwei, Lu, Jianwei, Luo, Ye

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Despite the recent success of long-tailed object detection, almost all long-tailed object detectors are developed based on the two-stage paradigm …”
    Volltext
    Tagungsbericht
  2. 2

    Sylph: A Hypernetwork Framework for Incremental Few-shot Object Detection von Yin, Li, Perez-Rua, Juan M, Liang, Kevin J

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… We study the challenging incremental few-shot object de-tection (iFSD) setting. Recently, hypernetwork-based approaches have been studied in the context of …”
    Volltext
    Tagungsbericht
  3. 3

    A ConvNet for the 2020s von Liu, Zhuang, Mao, Hanzi, Wu, Chao-Yuan, Feichtenhofer, Christoph, Darrell, Trevor, Xie, Saining

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs …”
    Volltext
    Tagungsbericht
  4. 4

    Grounded Language-Image Pre-training von Li, Liunian Harold, Zhang, Pengchuan, Zhang, Haotian, Yang, Jianwei, Li, Chunyuan, Zhong, Yiwu, Wang, Lijuan, Yuan, Lu, Zhang, Lei, Hwang, Jenq-Neng, Chang, Kai-Wei, Gao, Jianfeng

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… This paper presents a grounded language-image pretraining (GLIP) model for learning object-level, language-aware, and semantic-rich visual representations …”
    Volltext
    Tagungsbericht
  5. 5

    CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows von Dong, Xiaoyi, Bao, Jianmin, Chen, Dongdong, Zhang, Weiming, Yu, Nenghai, Yuan, Lu, Chen, Dong, Guo, Baining

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… We present CSWin Transformer, an efficient and effective Transformer-based backbone for general-purpose vision tasks. A challenging issue in Transformer design …”
    Volltext
    Tagungsbericht
  6. 6

    MetaFormer is Actually What You Need for Vision von Yu, Weihao, Luo, Mi, Zhou, Pan, Si, Chenyang, Zhou, Yichen, Wang, Xinchao, Feng, Jiashi, Yan, Shuicheng

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.01.2022
    “… Based on this observation, we hypothesize that the general architecture of the transformers, instead of the specific token mixer module, is more essential to the model's performance …”
    Volltext
    Tagungsbericht
  7. 7

    beta-DARTS: Beta-Decay Regularization for Differentiable Architecture Search von Ye, Peng, Li, Baopu, Li, Yikang, Chen, Tao, Fan, Jiayuan, Ouyang, Wanli

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Neural Architecture Search (NAS) has attracted increasingly more attention in recent years because of its capability to design deep neural network automatically …”
    Volltext
    Tagungsbericht
  8. 8

    SLIC: Self-Supervised Learning with Iterative Clustering for Human Action Videos von Khorasgani, Salar Hosseini, Chen, Yuxuan, Shkurti, Florian

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Self-supervised methods have significantly closed the gap with end-to-end supervised learning for image classification [13], [24 …”
    Volltext
    Tagungsbericht
  9. 9

    Revisiting Weakly Supervised Pre-Training of Visual Perception Models von Singh, Mannat, Gustafson, Laura, Adcock, Aaron, De Freitas Reis, Vinicius, Gedik, Bugra, Kosaraju, Raj Prateek, Mahajan, Dhruv, Girshick, Ross, Dollar, Piotr, Van Der Maaten, Laurens

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Model pre-training is a cornerstone of modern visual recognition systems. Although fully supervised pre-training on datasets like ImageNet is still the de-facto …”
    Volltext
    Tagungsbericht
  10. 10

    Multimodal Token Fusion for Vision Transformers von Wang, Yikai, Chen, Xinghao, Cao, Lele, Huang, Wenbing, Sun, Fuchun, Wang, Yunhe

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Many adaptations of transformers have emerged to address the single-modal vision tasks, where self-attention modules are stacked to handle input sources like …”
    Volltext
    Tagungsbericht
  11. 11

    Knowledge Distillation via the Target-aware Transformer von Lin, Sihao, Xie, Hongwei, Wang, Bing, Yu, Kaicheng, Chang, Xiaojun, Liang, Xiaodan, Wang, Gang

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… However, people tend to overlook the fact that, due to the architecture differences, the semantic information on the same spatial location usually vary …”
    Volltext
    Tagungsbericht
  12. 12

    Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation von Wu, Aming, Deng, Cheng

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… And we consider a realistic yet challenging scenario, namely Single-Domain Generalized Object Detection (Single-DGOD …”
    Volltext
    Tagungsbericht
  13. 13

    TransMix: Attend to Mix for Vision Transformers von Chen, Jie-Neng, Sun, Shuyang, He, Ju, Torr, Philip, Yuille, Alan, Bai, Song

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Mixup-based augmentation has been found to be effective for generalizing models during training, especially for Vision Transformers (ViTs) since they can …”
    Volltext
    Tagungsbericht
  14. 14

    Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors von Liu, Yen-Cheng, Ma, Chih-Yao, Kira, Zsolt

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… With the recent development of Semi-Supervised Object Detection (SS-OD) techniques, object detectors can be improved by using a limited amount of labeled data and abundant unlabeled data …”
    Volltext
    Tagungsbericht
  15. 15

    MiniViT: Compressing Vision Transformers with Weight Multiplexing von Zhang, Jinnian, Peng, Houwen, Wu, Kan, Liu, Mengchen, Xiao, Bin, Fu, Jianlong, Yuan, Lu

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Vision Transformer (ViT) models have recently drawn much attention in computer vision due to their high model capability. However, ViT models suffer from huge …”
    Volltext
    Tagungsbericht
  16. 16

    TableFormer: Table Structure Understanding with Transformers von Nassar, Ahmed, Livathinos, Nikolaos, Lysak, Maksym, Staar, Peter

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… In this paper, we present a new table-structure identification model. The latter improves the latest end-to-end deep learning model (i.e …”
    Volltext
    Tagungsbericht
  17. 17

    VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention von Deng, Shengheng, Liang, Zhihao, Sun, Lin, Jia, Kui

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Detecting objects from LiDAR point clouds is of tremendous significance in autonomous driving …”
    Volltext
    Tagungsbericht
  18. 18

    Human-Object Interaction Detection via Disentangled Transformer von Zhou, Desen, Liu, Zhichao, Wang, Jian, Wang, Leshan, Hu, Tao, Ding, Errui, Wang, Jingdong

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Human-Object Interaction Detection tackles the problem of joint localization and classification of human object interactions …”
    Volltext
    Tagungsbericht
  19. 19

    Progressive End-to-End Object Detection in Crowded Scenes von Zheng, Anlin, Zhang, Yuang, Zhang, Xiangyu, Qi, Xiaojuan, Sun, Jian

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… In this paper, we propose a new query-based detection framework for crowd detection …”
    Volltext
    Tagungsbericht
  20. 20

    DTA: Physical Camouflage Attacks using Differentiable Transformation Network von Suryanto, Naufal, Kim, Yongsu, Kang, Hyoeun, Larasati, Harashta Tatimma, Yun, Youngyeo, Le, Thi-Thu-Huong, Yang, Hunmin, Oh, Se-Yoon, Kim, Howon

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… In this paper, we propose the Differentiable Transformation Attack (DTA), a framework for generating a robust physical adversarial pattern on a target object to camouflage it against object detection models with a wide range of transformations …”
    Volltext
    Tagungsbericht