Suchergebnisse - Data-driven control with missing data

  1. 1

    Data-driven continuous-time Hammerstein modeling with missing data using improved Archimedes optimization algorithm von Islam, Muhammad Shafiqul, Ahmad, Mohd Ashraf

    ISSN: 2590-1230, 2590-1230
    Veröffentlicht: Elsevier B.V 01.12.2024
    Veröffentlicht in Results in engineering (01.12.2024)
    “… •Data-driven modelling based on IAOA is more robust than AOA for missing data cases. This research introduces the improved Archimedes optimization algorithm (IAOA …”
    Volltext
    Journal Article
  2. 2

    Data-driven fault diagnosis of control valve with missing data based on modeling and deep residual shrinkage network von Sun, Feng, Xu, He, Zhao, Yu-han, Zhang, Yu-dong

    ISSN: 1673-565X, 1862-1775
    Veröffentlicht: Hangzhou Zhejiang University Press 01.04.2022
    Veröffentlicht in Journal of Zhejiang University. A. Science (01.04.2022)
    “… ) is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data …”
    Volltext
    Journal Article
  3. 3

    A Missing Data Approach to Data-Driven Filtering and Control von Markovsky, Ivan

    ISSN: 0018-9286, 1558-2523
    Veröffentlicht: IEEE 01.04.2017
    Veröffentlicht in IEEE transactions on automatic control (01.04.2017)
    “… , the model is not optimized for its intended use. This technical note proposes an approach for data-driven filtering and control that combines the identification and the model-based design into one joint problem …”
    Volltext
    Journal Article
  4. 4

    Behavioral systems theory in data-driven analysis, signal processing, and control von Markovsky, Ivan, Dörfler, Florian

    ISSN: 1367-5788
    Veröffentlicht: Elsevier Ltd 2021
    Veröffentlicht in Annual reviews in control (2021)
    “… Till recently, it was an unorthodox niche of research but has gained renewed interest for the newly emerged data-driven paradigm, for which it is uniquely suited due to the representation-free …”
    Volltext
    Journal Article
  5. 5

    Datadriven Buck converter model identification method with missing outputs von Hou, Jie, Zhang, Xinhua, Wang, Huiming, Wang, Shiwei

    ISSN: 1751-8644, 1751-8652
    Veröffentlicht: Stevenage John Wiley & Sons, Inc 01.09.2024
    Veröffentlicht in IET control theory & applications (01.09.2024)
    “… A datadriven Buck converter model identification method is proposed to deal with missing (incomplete …”
    Volltext
    Journal Article
  6. 6

    Data-driven adaptive-critic optimal output regulation towards water level control of boiler-turbine systems von Wei, Qinglai, Wang, Xin, Liu, Yu, Xiong, Gang

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: Elsevier Ltd 30.11.2022
    Veröffentlicht in Expert systems with applications (30.11.2022)
    “… The problem is solved by employing an approximate optimal regulator that consist of optimal feedback control obtained by a data-driven learning algorithm and optimal feedforward control achieved …”
    Volltext
    Journal Article
  7. 7

    A study of data-driven distributionally robust optimization with incomplete joint data under finite support von Ren, Ke, Bidkhori, Hoda

    ISSN: 0377-2217, 1872-6860
    Veröffentlicht: Elsevier B.V 01.03.2023
    Veröffentlicht in European journal of operational research (01.03.2023)
    “… •Addressing the missing data issue in data-driven stochastic programming problems …”
    Volltext
    Journal Article
  8. 8

    Kalman Filter-Based Data-Driven Robust Model-Free Adaptive Predictive Control of a Complicated Industrial Process von Zhou, Ping, Zhang, Shuai, Wen, Liang, Fu, Jun, Chai, Tianyou, Wang, Hong

    ISSN: 1545-5955, 1558-3783
    Veröffentlicht: New York IEEE 01.04.2022
    “… In this article, a novel Kalman filter-based robust model-free adaptive predictive control (MFAPC) method is proposed for the direct data-driven control of molten iron quality in BF ironmaking …”
    Volltext
    Journal Article
  9. 9

    Data-driven dynamic interpolation and approximation von Markovsky, Ivan, Dörfler, Florian

    ISSN: 0005-1098, 1873-2836
    Veröffentlicht: Elsevier Ltd 01.01.2022
    Veröffentlicht in Automatica (Oxford) (01.01.2022)
    “… These “data-driven” representations led in turn to new system identification, signal processing, and control methods …”
    Volltext
    Journal Article
  10. 10

    Subspace identification for data-driven modeling and quality control of batch processes von Corbett, Brandon, Mhaskar, Prashant

    ISSN: 0001-1541, 1547-5905
    Veröffentlicht: New York Blackwell Publishing Ltd 01.05.2016
    Veröffentlicht in AIChE journal (01.05.2016)
    “… In this work, we present a novel, datadriven, quality modeling, and control approach for batch processes …”
    Volltext
    Journal Article
  11. 11

    Rebooting data-driven soft-sensors in process industries: A review of kernel methods von Liu, Yiqi, Xie, Min

    ISSN: 0959-1524, 1873-2771
    Veröffentlicht: Elsevier Ltd 01.05.2020
    Veröffentlicht in Journal of process control (01.05.2020)
    “… However, nonlinear, non-stationary, ill-data, auto-correlated and co-correlated behaviors in industrial data always make general data-driven methods inadequate, thus resorting to kernel-based methods …”
    Volltext
    Journal Article
  12. 12

    A review of the Expectation Maximization algorithm in data-driven process identification von Sammaknejad, Nima, Zhao, Yujia, Huang, Biao

    ISSN: 0959-1524, 1873-2771
    Veröffentlicht: Elsevier Ltd 01.01.2019
    Veröffentlicht in Journal of process control (01.01.2019)
    “… The Expectation Maximization (EM) algorithm has been widely used for parameter estimation in data-driven process identification …”
    Volltext
    Journal Article
  13. 13

    Data-driven Soft Sensors in the process industry von Kadlec, Petr, Gabrys, Bogdan, Strandt, Sibylle

    ISSN: 0098-1354, 1873-4375
    Veröffentlicht: Elsevier Ltd 21.04.2009
    Veröffentlicht in Computers & chemical engineering (21.04.2009)
    “… which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors …”
    Volltext
    Journal Article
  14. 14

    Synchrophasor Missing Data Recovery via Data-Driven Filtering von Konstantinopoulos, Stavros, De Mijolla, Genevieve M., Chow, Joe H., Lev-Ari, Hanoch, Wang, Meng

    ISSN: 1949-3053, 1949-3061
    Veröffentlicht: Piscataway IEEE 01.09.2020
    Veröffentlicht in IEEE transactions on smart grid (01.09.2020)
    “… ) to monitor dynamic behaviors. For real-time applications, the PMU data are streamed via the Internet from the substations to the phasor data concentrators, in the control centers …”
    Volltext
    Journal Article
  15. 15

    Time Series Data-Driven Online Prognosis of Wind Turbine Faults in Presence of SCADA Data Loss von Zhu, Lipeng, Zhang, Xinran

    ISSN: 1949-3029, 1949-3037
    Veröffentlicht: Piscataway IEEE 01.04.2021
    Veröffentlicht in IEEE transactions on sustainable energy (01.04.2021)
    “… To address this issue, this paper develops an intelligent time series (TS) data analytics approach for missing data-tolerant WTFP …”
    Volltext
    Journal Article
  16. 16

    Data-driven soft sensor approach for online quality prediction using state dependent parameter models von Bidar, Bahareh, Sadeghi, Jafar, Shahraki, Farhad, Khalilipour, Mir Mohammad

    ISSN: 0169-7439, 1873-3239
    Veröffentlicht: Elsevier B.V 15.03.2017
    Veröffentlicht in Chemometrics and intelligent laboratory systems (15.03.2017)
    “… The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP …”
    Volltext
    Journal Article
  17. 17
  18. 18

    A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes von Kaffashzadeh, Najmeh

    ISSN: 1867-8548, 1867-1381, 1867-8548
    Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 21.06.2023
    Veröffentlicht in Atmospheric measurement techniques (21.06.2023)
    “… Robust quality control is a prerequisite and an essential component in any data application …”
    Volltext
    Journal Article
  19. 19

    Data-driven sensor delay estimation in industrial processes using multivariate projection methods von Offermans, Tim, van Son, Bente, Bertinetto, Carlo G., Bot, Arjen, Brussee, Rogier, Jansen, Jeroen J.

    ISSN: 0169-7439, 1873-3239
    Veröffentlicht: Elsevier B.V 15.03.2024
    Veröffentlicht in Chemometrics and intelligent laboratory systems (15.03.2024)
    “… A key step in preparing industrial data for multivariate statistical modelling of (batch-)continuous processes is the estimation of sensor delays along the production line, to use as a correction for understanding relationships …”
    Volltext
    Journal Article
  20. 20

    A Hybrid Missing Data Imputation Method for Batch Process Monitoring Dataset von Gan, Qihong, Gong, Lang, Hu, Dasha, Jiang, Yuming, Ding, Xuefeng

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Basel MDPI AG 24.10.2023
    Veröffentlicht in Sensors (Basel, Switzerland) (24.10.2023)
    “… Batch process monitoring datasets usually contain missing data, which decreases the performance of data-driven modeling for fault identification and optimal control …”
    Volltext
    Journal Article