Suchergebnisse - Data-driven control with missing data
-
1
Data-driven continuous-time Hammerstein modeling with missing data using improved Archimedes optimization algorithm
ISSN: 2590-1230, 2590-1230Veröffentlicht: Elsevier B.V 01.12.2024Veröffentlicht in Results in engineering (01.12.2024)“… •Data-driven modelling based on IAOA is more robust than AOA for missing data cases. This research introduces the improved Archimedes optimization algorithm (IAOA …”
Volltext
Journal Article -
2
Data-driven fault diagnosis of control valve with missing data based on modeling and deep residual shrinkage network
ISSN: 1673-565X, 1862-1775Veröffentlicht: Hangzhou Zhejiang University Press 01.04.2022Veröffentlicht in Journal of Zhejiang University. A. Science (01.04.2022)“… ) is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data …”
Volltext
Journal Article -
3
A Missing Data Approach to Data-Driven Filtering and Control
ISSN: 0018-9286, 1558-2523Veröffentlicht: IEEE 01.04.2017Veröffentlicht in IEEE transactions on automatic control (01.04.2017)“… , the model is not optimized for its intended use. This technical note proposes an approach for data-driven filtering and control that combines the identification and the model-based design into one joint problem …”
Volltext
Journal Article -
4
Behavioral systems theory in data-driven analysis, signal processing, and control
ISSN: 1367-5788Veröffentlicht: Elsevier Ltd 2021Veröffentlicht in Annual reviews in control (2021)“… Till recently, it was an unorthodox niche of research but has gained renewed interest for the newly emerged data-driven paradigm, for which it is uniquely suited due to the representation-free …”
Volltext
Journal Article -
5
Data‐driven Buck converter model identification method with missing outputs
ISSN: 1751-8644, 1751-8652Veröffentlicht: Stevenage John Wiley & Sons, Inc 01.09.2024Veröffentlicht in IET control theory & applications (01.09.2024)“… A data‐driven Buck converter model identification method is proposed to deal with missing (incomplete …”
Volltext
Journal Article -
6
Data-driven adaptive-critic optimal output regulation towards water level control of boiler-turbine systems
ISSN: 0957-4174, 1873-6793Veröffentlicht: Elsevier Ltd 30.11.2022Veröffentlicht in Expert systems with applications (30.11.2022)“… The problem is solved by employing an approximate optimal regulator that consist of optimal feedback control obtained by a data-driven learning algorithm and optimal feedforward control achieved …”
Volltext
Journal Article -
7
A study of data-driven distributionally robust optimization with incomplete joint data under finite support
ISSN: 0377-2217, 1872-6860Veröffentlicht: Elsevier B.V 01.03.2023Veröffentlicht in European journal of operational research (01.03.2023)“… •Addressing the missing data issue in data-driven stochastic programming problems …”
Volltext
Journal Article -
8
Kalman Filter-Based Data-Driven Robust Model-Free Adaptive Predictive Control of a Complicated Industrial Process
ISSN: 1545-5955, 1558-3783Veröffentlicht: New York IEEE 01.04.2022Veröffentlicht in IEEE transactions on automation science and engineering (01.04.2022)“… In this article, a novel Kalman filter-based robust model-free adaptive predictive control (MFAPC) method is proposed for the direct data-driven control of molten iron quality in BF ironmaking …”
Volltext
Journal Article -
9
Data-driven dynamic interpolation and approximation
ISSN: 0005-1098, 1873-2836Veröffentlicht: Elsevier Ltd 01.01.2022Veröffentlicht in Automatica (Oxford) (01.01.2022)“… These “data-driven” representations led in turn to new system identification, signal processing, and control methods …”
Volltext
Journal Article -
10
Subspace identification for data-driven modeling and quality control of batch processes
ISSN: 0001-1541, 1547-5905Veröffentlicht: New York Blackwell Publishing Ltd 01.05.2016Veröffentlicht in AIChE journal (01.05.2016)“… In this work, we present a novel, data‐driven, quality modeling, and control approach for batch processes …”
Volltext
Journal Article -
11
Rebooting data-driven soft-sensors in process industries: A review of kernel methods
ISSN: 0959-1524, 1873-2771Veröffentlicht: Elsevier Ltd 01.05.2020Veröffentlicht in Journal of process control (01.05.2020)“… However, nonlinear, non-stationary, ill-data, auto-correlated and co-correlated behaviors in industrial data always make general data-driven methods inadequate, thus resorting to kernel-based methods …”
Volltext
Journal Article -
12
A review of the Expectation Maximization algorithm in data-driven process identification
ISSN: 0959-1524, 1873-2771Veröffentlicht: Elsevier Ltd 01.01.2019Veröffentlicht in Journal of process control (01.01.2019)“… The Expectation Maximization (EM) algorithm has been widely used for parameter estimation in data-driven process identification …”
Volltext
Journal Article -
13
Data-driven Soft Sensors in the process industry
ISSN: 0098-1354, 1873-4375Veröffentlicht: Elsevier Ltd 21.04.2009Veröffentlicht in Computers & chemical engineering (21.04.2009)“… which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors …”
Volltext
Journal Article -
14
Synchrophasor Missing Data Recovery via Data-Driven Filtering
ISSN: 1949-3053, 1949-3061Veröffentlicht: Piscataway IEEE 01.09.2020Veröffentlicht in IEEE transactions on smart grid (01.09.2020)“… ) to monitor dynamic behaviors. For real-time applications, the PMU data are streamed via the Internet from the substations to the phasor data concentrators, in the control centers …”
Volltext
Journal Article -
15
Time Series Data-Driven Online Prognosis of Wind Turbine Faults in Presence of SCADA Data Loss
ISSN: 1949-3029, 1949-3037Veröffentlicht: Piscataway IEEE 01.04.2021Veröffentlicht in IEEE transactions on sustainable energy (01.04.2021)“… To address this issue, this paper develops an intelligent time series (TS) data analytics approach for missing data-tolerant WTFP …”
Volltext
Journal Article -
16
Data-driven soft sensor approach for online quality prediction using state dependent parameter models
ISSN: 0169-7439, 1873-3239Veröffentlicht: Elsevier B.V 15.03.2017Veröffentlicht in Chemometrics and intelligent laboratory systems (15.03.2017)“… The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP …”
Volltext
Journal Article -
17
A standardized workflow for long-term longitudinal actigraphy data processing using one year of continuous actigraphy from the CAN-BIND Wellness Monitoring Study
ISSN: 2045-2322, 2045-2322Veröffentlicht: London Nature Publishing Group UK 15.09.2023Veröffentlicht in Scientific reports (15.09.2023)“… In this study, we used a data-driven approach to quality control, pre-processing and analysis of longitudinal actigraphy data collected over the course of 1 …”
Volltext
Journal Article -
18
A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes
ISSN: 1867-8548, 1867-1381, 1867-8548Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 21.06.2023Veröffentlicht in Atmospheric measurement techniques (21.06.2023)“… Robust quality control is a prerequisite and an essential component in any data application …”
Volltext
Journal Article -
19
Data-driven sensor delay estimation in industrial processes using multivariate projection methods
ISSN: 0169-7439, 1873-3239Veröffentlicht: Elsevier B.V 15.03.2024Veröffentlicht in Chemometrics and intelligent laboratory systems (15.03.2024)“… A key step in preparing industrial data for multivariate statistical modelling of (batch-)continuous processes is the estimation of sensor delays along the production line, to use as a correction for understanding relationships …”
Volltext
Journal Article -
20
A Hybrid Missing Data Imputation Method for Batch Process Monitoring Dataset
ISSN: 1424-8220, 1424-8220Veröffentlicht: Basel MDPI AG 24.10.2023Veröffentlicht in Sensors (Basel, Switzerland) (24.10.2023)“… Batch process monitoring datasets usually contain missing data, which decreases the performance of data-driven modeling for fault identification and optimal control …”
Volltext
Journal Article