Suchergebnisse - Counterfactual Multi-Agent reinforcement learning algorithm

  1. 1

    Multi-agent reinforcement learning vibration control and trajectory planning of a double flexible beam coupling system von Qiu, Zhi-cheng, Hu, Jun-fei, Zhang, Xian-min

    ISSN: 0888-3270, 1096-1216
    Veröffentlicht: Elsevier Ltd 01.10.2023
    Veröffentlicht in Mechanical systems and signal processing (01.10.2023)
    “… A multi-agent reinforcement learning vibration controller is designed for active vibration suppression of a movable double piezoelectric flexible beam coupling system, and the motion trajectory …”
    Volltext
    Journal Article
  2. 2

    Counterfactual-Based Action Evaluation Algorithm in Multi-Agent Reinforcement Learning von Yuan, Yuyu, Zhao, Pengqian, Guo, Ting, Jiang, Hongpu

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: MDPI AG 01.04.2022
    Veröffentlicht in Applied sciences (01.04.2022)
    “… for establishing cooperation. Therefore, we propose a novel counterfactual reasoning-based multi-agent reinforcement learning algorithm to evaluate the continuous contribution of agent actions on the latent state …”
    Volltext
    Journal Article
  3. 3

    Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park von Zhu, Dafeng, Yang, Bo, Liu, Yuxiang, Wang, Zhaojian, Ma, Kai, Guan, Xinping

    ISSN: 0306-2619
    Veröffentlicht: Elsevier Ltd 01.04.2022
    Veröffentlicht in Applied energy (01.04.2022)
    “… Owing to large industrial energy consumption, industrial production has brought a huge burden to the grid in terms of renewable energy access and power supply …”
    Volltext
    Journal Article
  4. 4

    Distributed Task Migration Optimization in MEC by Extending Multi-Agent Deep Reinforcement Learning Approach von Liu, Chubo, Tang, Fan, Hu, Yikun, Li, Kenli, Tang, Zhuo, Li, Keqin

    ISSN: 1045-9219, 1558-2183
    Veröffentlicht: New York IEEE 01.07.2021
    “… Closer to mobile users geographically, mobile edge computing (MEC) can provide some cloud-like capabilities to users more efficiently. This enables it possible …”
    Volltext
    Journal Article
  5. 5

    An Effective Training Method for Counterfactual Multi-Agent Policy Network Based on Differential Evolution Algorithm von Qu, Shaochun, Guo, Ruiqi, Cao, Zijian, Liu, Jiawei, Su, Baolong, Liu, Minghao

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.09.2024
    Veröffentlicht in Applied sciences (01.09.2024)
    “… ’ policies, counterfactual multi-agent (COMA) stands out in most multi-agent reinforcement learning (MARL) algorithms …”
    Volltext
    Journal Article
  6. 6

    Collaborative Task Offloading Optimization for Satellite Mobile Edge Computing Using Multi-Agent Deep Reinforcement Learning von Zhang, Hangyu, Zhao, Hongbo, Liu, Rongke, Kaushik, Aryan, Gao, Xiangqiang, Xu, Shenzhan

    ISSN: 0018-9545, 1939-9359
    Veröffentlicht: New York IEEE 01.10.2024
    Veröffentlicht in IEEE transactions on vehicular technology (01.10.2024)
    “… Furthermore, for evaluating the behavioral contribution of an agent to task completion, we adopt a deep reinforcement learning algorithm based on counterfactual multi-agent policy gradients (COMA …”
    Volltext
    Journal Article
  7. 7

    Multi-agent deep reinforcement learning for trajectory planning in UAVs-assisted mobile edge computing with heterogeneous requirements von Fan, Chenchen, Xu, Hongyu, Wang, Qingling

    ISSN: 1389-1286, 1872-7069
    Veröffentlicht: Elsevier B.V 01.06.2024
    Veröffentlicht in Computer networks (Amsterdam, Netherlands : 1999) (01.06.2024)
    “… To address the considered trajectory planning optimization problem, a collaborative multi-agent deep reinforcement learning (MADRL …”
    Volltext
    Journal Article
  8. 8

    Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward von Shao, Kun, Zhu, Yuanheng, Tang, Zhentao, Zhao, Dongbin

    ISSN: 2161-4407
    Veröffentlicht: IEEE 01.07.2020
    “… To address this credit assignment problem, we propose a multi-agent reinforcement learning algorithm with counterfactual reward mechanism, which is termed as CoRe algorithm …”
    Volltext
    Tagungsbericht
  9. 9

    Distributed Digital Twin Migration in Multi-Tier Computing Systems von Chen, Zhixiong, Yi, Wenqiang, Nallanathan, Arumugam, Chambers, Jonathon A.

    ISSN: 1932-4553, 1941-0484
    Veröffentlicht: New York IEEE 01.01.2024
    “… At the network edges, the multi-tier computing framework provides mobile users with efficient cloud-like computing and signal processing capabilities …”
    Volltext
    Journal Article
  10. 10

    Counterfactual value decomposition for cooperative multi-agent reinforcement learning von Liu, Kai, Zhang, Tianxian, Xu, Xiangliang, Zhao, Yuyang

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.10.2025
    Veröffentlicht in Neural networks (01.10.2025)
    “… Value decomposition has become a central focus in Multi-Agent Reinforcement Learning (MARL) in recent years …”
    Volltext
    Journal Article
  11. 11

    Adherence Improves Cooperation in Sequential Social Dilemmas von Yuan, Yuyu, Guo, Ting, Zhao, Pengqian, Jiang, Hongpu

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.08.2022
    Veröffentlicht in Applied sciences (01.08.2022)
    “… In recent research, these options to cooperate or defect were temporally extended. Here, we propose a novel adherence-based multi-agent reinforcement learning algorithm …”
    Volltext
    Journal Article
  12. 12

    Hierarchical Task Offloading for Vehicular Fog Computing Based on Multi-Agent Deep Reinforcement Learning von Hou, Yukai, Wei, Zhiwei, Zhang, Rongqing, Cheng, Xiang, Yang, Liuqing

    ISSN: 1536-1276, 1558-2248
    Veröffentlicht: New York IEEE 01.04.2024
    Veröffentlicht in IEEE transactions on wireless communications (01.04.2024)
    “… Vehicular fog computing (VFC) has been expected as a promising architecture that can make full use of computing resources of idle vehicles to increase …”
    Volltext
    Journal Article
  13. 13

    DNN Inference Acceleration for Smart Devices in Industry 5.0 by Decentralized Deep Reinforcement Learning von Dong, Chongwu, Shafiq, Muhammad, Dabel, Maryam M. Al, Sun, Yanbin, Tian, Zhihong

    ISSN: 0098-3063, 1558-4127
    Veröffentlicht: New York IEEE 01.02.2024
    Veröffentlicht in IEEE transactions on consumer electronics (01.02.2024)
    “… With the emergence of Industry 5.0, there has been a significant surge in the need for intelligent services within the realm of smart devices. Currently, deep …”
    Volltext
    Journal Article
  14. 14

    Counterfactual Multi-Agent Reinforcement Learning for Long- Horizon Medical Assistive Tasks with Dual-arm Robot von Lee, Jin Hyuk, Oh, Ji-Heon, Espinoza, Ismael, Jung, Danbi, Choi, Yong-Hyeok, Lee, Won Hee, Kim, Wonha, Kim, Tae-Seong

    ISSN: 2694-0604
    Veröffentlicht: United States 01.07.2025
    “… This study introduces a novel multi-agent reinforcement learning approach, termed Counterfactual Multi-Agent Demo Augmented Policy Gradient (COMA-DAPG …”
    Weitere Angaben
    Journal Article
  15. 15

    Cooperative traffic signal control through a counterfactual multi-agent deep actor critic approach von Song, Xiang (Ben), Zhou, Bin, Ma, Dongfang

    ISSN: 0968-090X
    Veröffentlicht: Elsevier Ltd 01.03.2024
    “… In recent years, reinforcement learning (RL) algorithms have attracted the increasing attention of researchers in the area of signal control optimization, since they can learn the optimal timing policy themselves by analyzing changing patterns …”
    Volltext
    Journal Article
  16. 16

    Multi-Agent Reinforcement Learning-Based Digital Twin Migration Over Wireless Networks von Chen, Zhixiong, Yi, Wenqiang, Nallanathan, Arumugam

    ISSN: 1938-1883
    Veröffentlicht: IEEE 09.06.2024
    “… To reduce the synchronization latency in digital twin (DT)-enabled wireless edge networks, the DT migration provides an efficient roaming solution among edge …”
    Volltext
    Tagungsbericht
  17. 17

    Counterfactual Reward Estimation for Credit Assignment in Multi-agent Deep Reinforcement Learning over Wireless Video Transmission von Wenhan, Y., Qian, Liangxin, Chua, Terence Jie, Zhao, Jun

    ISSN: 2575-8411
    Veröffentlicht: IEEE 23.07.2024
    “… , and enhancing the user experience by addressing successive frame losses. To handle credit assignment in multi-agent scenarios, we integrate counterfactual reward shaping …”
    Volltext
    Tagungsbericht
  18. 18

    Cooperative and Competitive Multi-Agent Systems: From Optimization to Games von Wang, Jianrui, Hong, Yitian, Wang, Jiali, Xu, Jiapeng, Tang, Yang, Han, Qing-Long, Kurths, Jurgen

    ISSN: 2329-9266, 2329-9274
    Veröffentlicht: Piscataway Chinese Association of Automation (CAA) 01.05.2022
    Veröffentlicht in IEEE/CAA journal of automatica sinica (01.05.2022)
    “… Multi-agent systems can solve scientific issues related to complex systems that are difficult or impossible for a single agent to solve through mutual collaboration and cooperation optimization …”
    Volltext
    Journal Article
  19. 19

    Cross-Regional Task Offloading with Multi-Agent Reinforcement Learning for Hierarchical Vehicular Fog Computing von Hou, Yukai, Wei, Zhiwei, Liu, Shiyang, Li, Bing, Zhang, Rongqing, Cheng, Xiang, Yang, Liuqing

    ISSN: 2642-7389
    Veröffentlicht: IEEE 09.07.2023
    “… on multi-agent reinforcement learning. Moreover, to tackle the inefficiency caused by the multi-agent credit assignment problem, we provide …”
    Volltext
    Tagungsbericht
  20. 20

    Joint Optimization of Handover Control and Power Allocation Based on Multi-Agent Deep Reinforcement Learning von Guo, Delin, Tang, Lan, Zhang, Xinggan, Liang, Ying-Chang

    ISSN: 0018-9545, 1939-9359
    Veröffentlicht: New York IEEE 01.11.2020
    Veröffentlicht in IEEE transactions on vehicular technology (01.11.2020)
    “… , UEs, have the same target. Then, to solve the multi-agent task, and get decentralized policies for each UE, we develop a multi-agent reinforcement learning (MARL …”
    Volltext
    Journal Article