Suchergebnisse - Control methods Deep Learning

  1. 1

    TorchQC - A framework for efficiently integrating machine and deep learning methods in quantum dynamics and control von Koutromanos, Dimitris, Stefanatos, Dionisis, Paspalakis, Emmanuel

    ISSN: 0010-4655
    Veröffentlicht: Elsevier B.V 01.05.2025
    Veröffentlicht in Computer physics communications (01.05.2025)
    “… The need for a framework that brings together machine learning models and quantum simulation methods has been quite high within the quantum control field, with the ultimate goal of exploiting …”
    Volltext
    Journal Article
  2. 2

    Adaptive blind control using deep learning methods von Derbas, Ghadeer, Xhonneux, André, Müller, Dirk

    ISSN: 1742-6588, 1742-6596, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.11.2025
    Veröffentlicht in Journal of physics. Conference series (01.11.2025)
    “… This paper presents a data-driven approach to predict shade position using deep learning, aiming to improve the adaptability and occupant satisfaction of automated shading …”
    Volltext
    Journal Article
  3. 3

    ED-DQN: An event-driven deep reinforcement learning control method for multi-zone residential buildings von Fu, Qiming, Li, Zhu, Ding, Zhengkai, Chen, Jianping, Luo, Jun, Wang, Yunzhe, Lu, You

    ISSN: 0360-1323
    Veröffentlicht: Elsevier Ltd 15.08.2023
    Veröffentlicht in Building and environment (15.08.2023)
    “… ) has been adopted to tackle this issue, but traditional RL methods require massive training data, long learning periods, and frequent equipment adjustments …”
    Volltext
    Journal Article
  4. 4
  5. 5

    Dynamic speed trajectory generation and tracking control for autonomous driving of intelligent high-speed trains combining with deep learning and backstepping control methods von Wang, Xi, Li, Shukai, Cao, Yuan, Xin, Tianpeng, Yang, Lixing

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.10.2022
    Veröffentlicht in Engineering applications of artificial intelligence (01.10.2022)
    “… learning and backstepping control methods. By exploiting the deep learning methods, a speed trajectory generator is trained with the actual driving data …”
    Volltext
    Journal Article
  6. 6

    An Optimal Control Deep Learning Method to Design Artificial Viscosities for Discontinuous Galerkin Schemes von Bois, Léo, Franck, Emmanuel, Navoret, Laurent, Vigon, Vincent

    ISSN: 0885-7474, 1573-7691
    Veröffentlicht: New York Springer US 01.12.2024
    Veröffentlicht in Journal of scientific computing (01.12.2024)
    “… In this paper, we propose a method for constructing a neural network viscosity in order to reduce the non-physical oscillations generated by high-order Discontinuous Galerkin methods on uniform Cartesian grids …”
    Volltext
    Journal Article
  7. 7

    LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process Control von Huang, Keke, Wei, Ke, Li, Fanbiao, Yang, Chunhua, Gui, Weihua

    ISSN: 0278-0046, 1557-9948
    Veröffentlicht: New York IEEE 01.11.2023
    Veröffentlicht in IEEE transactions on industrial electronics (1982) (01.11.2023)
    “… Inspired by the powerful representation capabilities of deep learning, this paper proposed a deep learning based MPC method …”
    Volltext
    Journal Article
  8. 8

    A deep reinforcement learning control method for multi-zone precooling in commercial buildings von Fan, Yuankang, Fu, Qiming, Chen, Jianping, Wang, Yunzhe, Lu, You, Liu, Ke

    ISSN: 1359-4311
    Veröffentlicht: Elsevier Ltd 01.02.2025
    Veröffentlicht in Applied thermal engineering (01.02.2025)
    “… •By combining precooling control with the Deep Q-Network algorithm, the method effectively handles complex environmental changes, significantly improving precooling performance and showing strong energy-saving potential …”
    Volltext
    Journal Article
  9. 9

    A deep reinforcement learning control method for PEMFC thermal management and air supply system von Li, Wenhao, Li, Shuai, Du, Changqing, Xu, Yinsong, Xin, Qianqian, Yan, Fuwu

    ISSN: 1359-4311
    Veröffentlicht: Elsevier Ltd 15.11.2025
    Veröffentlicht in Applied thermal engineering (15.11.2025)
    “… , especially under dynamic load conditions. This study proposes a new control strategy based on deep reinforcement learning (DRL …”
    Volltext
    Journal Article
  10. 10

    An immune optimization deep reinforcement learning control method used for magnetorheological elastomer vibration absorber von Wang, Chi, Cheng, Weiheng, Zhang, Hongli, Dou, Wei, Chen, Jinbo

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.11.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.11.2024)
    “… (PID), fuzzy control, and ON-OFF algorithms to control the vibration absorption system …”
    Volltext
    Journal Article
  11. 11

    Effective MPC strategies using deep learning methods for control of nonlinear system von Rajasekhar, N., Nagappan, K. Kumaran, Radhakrishnan, T. K., Samsudeen, N.

    ISSN: 2195-268X, 2195-2698
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
    Veröffentlicht in International journal of dynamics and control (01.10.2024)
    “… With the advent of sophisticated deep learning methods, neural networks can be employed to improve the computational efficiency of the MPC …”
    Volltext
    Journal Article
  12. 12

    A multi-channel active noise control system using deep learning-based method to estimate secondary path and normalized-clustered control strategy for vehicle interior engine noise von Cheng, Can, Liu, Zhien, Chen, Wan, Li, Xiaolong, Liao, Wu, Lu, Chihua

    ISSN: 0003-682X
    Veröffentlicht: Elsevier Ltd 15.01.2025
    Veröffentlicht in Applied acoustics (15.01.2025)
    “… •A deep learning method is proposed to estimate the secondary paths, which avoids the frequent re-estimation of secondary paths using the traditional offline estimation method under the disturbance …”
    Volltext
    Journal Article
  13. 13

    An anti-swing control method combining deep learning prediction models with a multistate fractional-order terminal sliding mode controller for wave motion compensation devices von Wang, Yao, Lu, Xinrui, Gao, Yuantian, Chen, Yuan

    ISSN: 0888-3270
    Veröffentlicht: Elsevier Ltd 15.01.2025
    Veröffentlicht in Mechanical systems and signal processing (15.01.2025)
    “… Therefore, an anti-swing control method is proposed that combines deep learning prediction models with a multistate fractional-order terminal sliding mode controller for wave motion compensation devices …”
    Volltext
    Journal Article
  14. 14

    Optimal energy management for air cooled server fans using Deep Reinforcement Learning control method von Fulpagare, Yogesh, Huang, Kuei-Ru, Liao, Ying-Hao, Wang, Chi-Chuan

    ISSN: 0378-7788
    Veröffentlicht: Elsevier B.V 15.12.2022
    Veröffentlicht in Energy and buildings (15.12.2022)
    “… •The design of reward function has a major influence on the control actions. The current study proposed the Deep Reinforcement Learning (DRL …”
    Volltext
    Journal Article
  15. 15

    A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems von Cheng, Haoxin, Li, Haihong, Dai, Qionglin, Yang, Junzhong

    ISSN: 0960-0779
    Veröffentlicht: Elsevier Ltd 01.09.2023
    Veröffentlicht in Chaos, solitons and fractals (01.09.2023)
    “… We propose a model-free deep reinforcement learning method for controlling the synchronization between two identical chaotic systems, one target and one reference …”
    Volltext
    Journal Article
  16. 16
  17. 17

    Deep Learning Methods for Mean Field Control Problems With Delay von Fouque, Jean-Pierre, Zhang, Zhaoyu

    ISSN: 2297-4687, 2297-4687
    Veröffentlicht: Frontiers Media S.A 12.05.2020
    Veröffentlicht in Frontiers in applied mathematics and statistics (12.05.2020)
    “… Two numerical algorithms are provided based on deep learning techniques, one is to directly parameterize the optimal control using neural networks, the other is based on numerically solving the McKean …”
    Volltext
    Journal Article
  18. 18

    Time series imaging-based deep learning method for inventory control von Tian, Yu-Xin, Zhang, Chuan

    ISSN: 0308-1079, 1563-5104
    Veröffentlicht: Abingdon Taylor & Francis 03.04.2025
    Veröffentlicht in International journal of general systems (03.04.2025)
    “… To remedy this, we propose a time series imaging-based deep learning method, which automatically extracts crucial features alongside those selected manually …”
    Volltext
    Journal Article
  19. 19

    Bio-inspired algorithms for industrial robot control using deep learning methods von Guan, Jiwen, Su, Yanzhao, Su, Ling, Sivaparthipan, C.B., Muthu, BalaAnand

    ISSN: 2213-1388
    Veröffentlicht: Elsevier Ltd 01.10.2021
    Veröffentlicht in Sustainable energy technologies and assessments (01.10.2021)
    “… Hence, in this study, a Bio-inspired Intelligent Industrial Robot Control System (BIIRCS) has been suggested using Deep Learning methods …”
    Volltext
    Journal Article
  20. 20

    A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks von Mao, Bomin, Tang, Fengxiao, Fadlullah, Zubair Md, Kato, Nei, Akashi, Osamu, Inoue, Takeru, Mizutani, Kimihiro

    ISSN: 1536-1284, 1558-0687
    Veröffentlicht: New York IEEE 01.08.2018
    Veröffentlicht in IEEE wireless communications (01.08.2018)
    “… we propose a non-supervised deep learning based routing strategy running in the SDN controller …”
    Volltext
    Journal Article