Suchergebnisse - Control methods Deep Learning
-
1
TorchQC - A framework for efficiently integrating machine and deep learning methods in quantum dynamics and control
ISSN: 0010-4655Veröffentlicht: Elsevier B.V 01.05.2025Veröffentlicht in Computer physics communications (01.05.2025)“… The need for a framework that brings together machine learning models and quantum simulation methods has been quite high within the quantum control field, with the ultimate goal of exploiting …”
Volltext
Journal Article -
2
Adaptive blind control using deep learning methods
ISSN: 1742-6588, 1742-6596, 1742-6596Veröffentlicht: Bristol IOP Publishing 01.11.2025Veröffentlicht in Journal of physics. Conference series (01.11.2025)“… This paper presents a data-driven approach to predict shade position using deep learning, aiming to improve the adaptability and occupant satisfaction of automated shading …”
Volltext
Journal Article -
3
ED-DQN: An event-driven deep reinforcement learning control method for multi-zone residential buildings
ISSN: 0360-1323Veröffentlicht: Elsevier Ltd 15.08.2023Veröffentlicht in Building and environment (15.08.2023)“… ) has been adopted to tackle this issue, but traditional RL methods require massive training data, long learning periods, and frequent equipment adjustments …”
Volltext
Journal Article -
4
Withdrawal: He, Y., Zhang, J., Bio‐Inspired Algorithms For Industrial Robot Control Using A Deep Learning Method. Agronomy Journal. 2022; Accepted Articles. https://doi.org/10.1002/agj2.21214
ISSN: 0002-1962, 1435-0645Veröffentlicht: 01.11.2023Veröffentlicht in Agronomy journal (01.11.2023)Volltext
Journal Article -
5
Dynamic speed trajectory generation and tracking control for autonomous driving of intelligent high-speed trains combining with deep learning and backstepping control methods
ISSN: 0952-1976Veröffentlicht: Elsevier Ltd 01.10.2022Veröffentlicht in Engineering applications of artificial intelligence (01.10.2022)“… learning and backstepping control methods. By exploiting the deep learning methods, a speed trajectory generator is trained with the actual driving data …”
Volltext
Journal Article -
6
An Optimal Control Deep Learning Method to Design Artificial Viscosities for Discontinuous Galerkin Schemes
ISSN: 0885-7474, 1573-7691Veröffentlicht: New York Springer US 01.12.2024Veröffentlicht in Journal of scientific computing (01.12.2024)“… In this paper, we propose a method for constructing a neural network viscosity in order to reduce the non-physical oscillations generated by high-order Discontinuous Galerkin methods on uniform Cartesian grids …”
Volltext
Journal Article -
7
LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process Control
ISSN: 0278-0046, 1557-9948Veröffentlicht: New York IEEE 01.11.2023Veröffentlicht in IEEE transactions on industrial electronics (1982) (01.11.2023)“… Inspired by the powerful representation capabilities of deep learning, this paper proposed a deep learning based MPC method …”
Volltext
Journal Article -
8
A deep reinforcement learning control method for multi-zone precooling in commercial buildings
ISSN: 1359-4311Veröffentlicht: Elsevier Ltd 01.02.2025Veröffentlicht in Applied thermal engineering (01.02.2025)“… •By combining precooling control with the Deep Q-Network algorithm, the method effectively handles complex environmental changes, significantly improving precooling performance and showing strong energy-saving potential …”
Volltext
Journal Article -
9
A deep reinforcement learning control method for PEMFC thermal management and air supply system
ISSN: 1359-4311Veröffentlicht: Elsevier Ltd 15.11.2025Veröffentlicht in Applied thermal engineering (15.11.2025)“… , especially under dynamic load conditions. This study proposes a new control strategy based on deep reinforcement learning (DRL …”
Volltext
Journal Article -
10
An immune optimization deep reinforcement learning control method used for magnetorheological elastomer vibration absorber
ISSN: 0952-1976Veröffentlicht: Elsevier Ltd 01.11.2024Veröffentlicht in Engineering applications of artificial intelligence (01.11.2024)“… (PID), fuzzy control, and ON-OFF algorithms to control the vibration absorption system …”
Volltext
Journal Article -
11
Effective MPC strategies using deep learning methods for control of nonlinear system
ISSN: 2195-268X, 2195-2698Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024Veröffentlicht in International journal of dynamics and control (01.10.2024)“… With the advent of sophisticated deep learning methods, neural networks can be employed to improve the computational efficiency of the MPC …”
Volltext
Journal Article -
12
A multi-channel active noise control system using deep learning-based method to estimate secondary path and normalized-clustered control strategy for vehicle interior engine noise
ISSN: 0003-682XVeröffentlicht: Elsevier Ltd 15.01.2025Veröffentlicht in Applied acoustics (15.01.2025)“… •A deep learning method is proposed to estimate the secondary paths, which avoids the frequent re-estimation of secondary paths using the traditional offline estimation method under the disturbance …”
Volltext
Journal Article -
13
An anti-swing control method combining deep learning prediction models with a multistate fractional-order terminal sliding mode controller for wave motion compensation devices
ISSN: 0888-3270Veröffentlicht: Elsevier Ltd 15.01.2025Veröffentlicht in Mechanical systems and signal processing (15.01.2025)“… Therefore, an anti-swing control method is proposed that combines deep learning prediction models with a multistate fractional-order terminal sliding mode controller for wave motion compensation devices …”
Volltext
Journal Article -
14
Optimal energy management for air cooled server fans using Deep Reinforcement Learning control method
ISSN: 0378-7788Veröffentlicht: Elsevier B.V 15.12.2022Veröffentlicht in Energy and buildings (15.12.2022)“… •The design of reward function has a major influence on the control actions. The current study proposed the Deep Reinforcement Learning (DRL …”
Volltext
Journal Article -
15
A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems
ISSN: 0960-0779Veröffentlicht: Elsevier Ltd 01.09.2023Veröffentlicht in Chaos, solitons and fractals (01.09.2023)“… We propose a model-free deep reinforcement learning method for controlling the synchronization between two identical chaotic systems, one target and one reference …”
Volltext
Journal Article -
16
Digital twin enabled real-time advanced control of TBM operation using deep learning methods
ISSN: 0926-5805Veröffentlicht: 01.02.2024Veröffentlicht in Automation in construction (01.02.2024)Volltext
Journal Article -
17
Deep Learning Methods for Mean Field Control Problems With Delay
ISSN: 2297-4687, 2297-4687Veröffentlicht: Frontiers Media S.A 12.05.2020Veröffentlicht in Frontiers in applied mathematics and statistics (12.05.2020)“… Two numerical algorithms are provided based on deep learning techniques, one is to directly parameterize the optimal control using neural networks, the other is based on numerically solving the McKean …”
Volltext
Journal Article -
18
Time series imaging-based deep learning method for inventory control
ISSN: 0308-1079, 1563-5104Veröffentlicht: Abingdon Taylor & Francis 03.04.2025Veröffentlicht in International journal of general systems (03.04.2025)“… To remedy this, we propose a time series imaging-based deep learning method, which automatically extracts crucial features alongside those selected manually …”
Volltext
Journal Article -
19
Bio-inspired algorithms for industrial robot control using deep learning methods
ISSN: 2213-1388Veröffentlicht: Elsevier Ltd 01.10.2021Veröffentlicht in Sustainable energy technologies and assessments (01.10.2021)“… Hence, in this study, a Bio-inspired Intelligent Industrial Robot Control System (BIIRCS) has been suggested using Deep Learning methods …”
Volltext
Journal Article -
20
A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks
ISSN: 1536-1284, 1558-0687Veröffentlicht: New York IEEE 01.08.2018Veröffentlicht in IEEE wireless communications (01.08.2018)“… we propose a non-supervised deep learning based routing strategy running in the SDN controller …”
Volltext
Journal Article