Suchergebnisse - Constrained Graph Variational Autoencoder

  1. 1

    Conditional Constrained Graph Variational Autoencoders for Molecule Design von Rigoni, Davide, Navarin, Nicolo, Sperduti, Alessandro

    Veröffentlicht: IEEE 01.12.2020
    “… We present Conditional Constrained Graph Variational Autoencoder (CCGVAE), a model that implements this key-idea in a state-of-the-art model, and shows improved results …”
    Volltext
    Tagungsbericht
  2. 2

    Genetic Constrained Graph Variational Autoencoder for COVID-19 Drug Discovery von Cheng, Tianyue, Fan, Tianchi, Landi, Wang

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.04.2021
    Veröffentlicht in arXiv.org (23.04.2021)
    “… (commonly known as SARS-CoV-2). We proposed a new model called Genetic Constrained Graph Variational Autoencoder (GCGVAE …”
    Volltext
    Paper
  3. 3

    Constrained Graph Variational Autoencoders for Molecule Design von Liu, Qi, Allamanis, Miltiadis, Brockschmidt, Marc, Gaunt, Alexander L

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 07.03.2019
    Veröffentlicht in arXiv.org (07.03.2019)
    “… We propose a variational autoencoder model in which both encoder and decoder are graph-structured …”
    Volltext
    Paper
  4. 4

    Conditional Constrained Graph Variational Autoencoders for Molecule Design von Rigoni, Davide, Navarin, Nicolò, Sperduti, Alessandro

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 01.09.2020
    Veröffentlicht in arXiv.org (01.09.2020)
    “… We present Conditional Constrained Graph Variational Autoencoder (CCGVAE), a model that implements this key-idea in a state-of-the-art model, and shows improved results …”
    Volltext
    Paper
  5. 5

    Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering Variational Autoencoder von Shervani-Tabar, Navid, Zabaras, Nicholas

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.02.2021
    Veröffentlicht in arXiv.org (11.02.2021)
    “… In this work, we assess the predictive capabilities of a molecular generative model developed based on variational inference and graph theory in the small data regime …”
    Volltext
    Paper
  6. 6
  7. 7

    Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders von Ma, Tengfei, Chen, Jie, Cao, Xiao

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.09.2018
    Veröffentlicht in arXiv.org (19.09.2018)
    “… These constraints are not easy to be incorporated into a generative model. In this work, we propose a regularization framework for variational autoencoders as a step …”
    Volltext
    Paper
  8. 8
  9. 9

    Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder von Li, Chunyan, Yao, Junfeng, Wei, Wei, Niu, Zhangming, Zeng, Xiangxiang, Li, Jin, Wang, Jianmin

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.04.2024
    “… We proposed GEOM-CVAE, a constrained variational autoencoder based on geometric representation for molecular generation with specific properties, which is protein-context-dependent …”
    Volltext
    Journal Article
  10. 10

    OpenWGL: open-world graph learning for unseen class node classification von Wu, Man, Pan, Shirui, Zhu, Xingquan

    ISSN: 0219-1377, 0219-3116
    Veröffentlicht: London Springer London 01.09.2021
    Veröffentlicht in Knowledge and information systems (01.09.2021)
    “… Graph learning, such as node classification, is typically carried out in a closed-world setting …”
    Volltext
    Journal Article
  11. 11

    Predicting Protein-Protein Interactions Using Sequence and Network Information via Variational Graph Autoencoder von Luo, Xin, Wang, Liwei, Hu, Pengwei, Hu, Lun

    ISSN: 1545-5963, 1557-9964, 1557-9964
    Veröffentlicht: United States IEEE 01.09.2023
    “… To overcome this problem, a novel PPI prediction algorithm, namely PASNVGA, is proposed in this work by combining the sequence and network information of proteins via variational graph autoencoder …”
    Volltext
    Journal Article
  12. 12

    Learning Graph Variational Autoencoders with Constraints and Structured Priors for Conditional Indoor 3D Scene Generation von Chattopadhyay, Aditya, Zhang, Xi, Wipf, David Paul, Arora, Himanshu, Vidal, Rene

    ISSN: 2642-9381
    Veröffentlicht: IEEE 01.01.2023
    “… We present a graph variational autoencoder with a structured prior for generating the layout of indoor 3D scenes …”
    Volltext
    Tagungsbericht
  13. 13

    Self-Organizing Maps-Assisted Variational Autoencoder for Unsupervised Network Anomaly Detection von Huang, Hailong, Yang, Jiahong, Zeng, Hang, Wang, Yaqin, Xiao, Liuming

    ISSN: 2073-8994, 2073-8994
    Veröffentlicht: Basel MDPI AG 01.04.2025
    Veröffentlicht in Symmetry (Basel) (01.04.2025)
    “… To overcome these limitations, this study proposes a self-organizing maps-assisted variational autoencoder (SOVAE) framework …”
    Volltext
    Journal Article
  14. 14

    Knowledge-embedding deep interpretable graph model for wear prediction: Application in pantograph-catenary systems von Mo, Yutao, Peng, Yizhen, Wu, Jing, Fan, Kangbo

    ISSN: 0951-8320
    Veröffentlicht: Elsevier Ltd 01.09.2025
    Veröffentlicht in Reliability engineering & system safety (01.09.2025)
    “… on material parameters, environmental factors, and wear mechanisms are limited in accuracy. Purely data-driven approaches, on the other hand, are constrained …”
    Volltext
    Journal Article
  15. 15

    OpenWGL: Open-World Graph Learning von Wu, Man, Pan, Shirui, Zhu, Xingquan

    ISSN: 2374-8486
    Veröffentlicht: IEEE 01.11.2020
    “… In traditional graph learning tasks, such as node classification, learning is carried out in a closed-world setting where the number of classes and their training samples are provided to help train …”
    Volltext
    Tagungsbericht
  16. 16

    Vehicular Social Dynamic Anomaly Detection With Recurrent Multi-Mask Aggregator Enabled VAE von Hu, Zehao, He, Yuwei, Shen, Yuqi, Jo, Minho, Collotta, Mario, Shen, Guojiang, Kong, Xiangjie

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: IEEE 01.12.2024
    “… However, Graph Attention Networks (GATs) are constrained by the univariate nature of attention heads and coefficients, thus lacking flexibility …”
    Volltext
    Journal Article
  17. 17

    TV-CCANM: a transformer variational inference in confounding cascade additive noise model for causal effect estimation von Ahmad, Sohail, Wang, Hong

    ISSN: 0094-9655, 1563-5163
    Veröffentlicht: Taylor & Francis 22.09.2025
    Veröffentlicht in Journal of statistical computation and simulation (22.09.2025)
    “… While the Confounding Cascade Nonlinear Additive Noise Model (CCANM) coupled with variational autoencoders (VAEs …”
    Volltext
    Journal Article
  18. 18

    A Generative Framework for Predicting Antiferromagnets von Gong, Jianhu, Zhang, Zhengming, Fan, Zhenyu, Fu, Hanghang, Wang, Hongchang, Wang, Dunhui

    ISSN: 2198-3844, 2198-3844
    Veröffentlicht: Germany 26.09.2025
    Veröffentlicht in Advanced science (26.09.2025)
    “… Herein, an AFM design framework integrating a crystal diffusion variational autoencoder is presented with data augmentation (CDVAE‐DA …”
    Volltext
    Journal Article
  19. 19

    Unified Embeddings of Structural and Functional Connectome via a Function-Constrained Structural Graph Variational Auto-Encoder von Amodeo, Carlo, tel, Igor, Ajilore, Olusola, Zhan, Liang, Leow, Alex, Tulabandhula, Theja

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.07.2022
    Veröffentlicht in arXiv.org (05.07.2022)
    “… leveraged to improve our understanding of the brain. To this end, we propose a function-constrained structural graph variational autoencoder (FCS-GVAE …”
    Volltext
    Paper
  20. 20

    Structured Graph Variational Autoencoders for Indoor Furniture layout Generation von Chattopadhyay, Aditya, Zhang, Xi, Wipf, David Paul, Arora, Himanshu, Vidal, Rene

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.07.2022
    Veröffentlicht in arXiv.org (22.07.2022)
    “… We present a structured graph variational autoencoder for generating the layout of indoor 3D scenes …”
    Volltext
    Paper