Suchergebnisse - Computing methodologies Machine learning Learning settings Learning from demonstrations
-
1
VMP: Versatile Motion Priors for Robustly Tracking Motion on Physical Characters
ISSN: 0167-7055, 1467-8659Veröffentlicht: Oxford Blackwell Publishing Ltd 01.12.2024Veröffentlicht in Computer graphics forum (01.12.2024)“… Recent progress in physics‐based character control has made it possible to learn policies from unstructured motion data. However, it remains challenging to …”
Volltext
Journal Article -
2
Learning to Move Like Professional Counter‐Strike Players
ISSN: 0167-7055, 1467-8659Veröffentlicht: Oxford Blackwell Publishing Ltd 01.12.2024Veröffentlicht in Computer graphics forum (01.12.2024)“… In multiplayer, first‐person shooter games like Counter‐Strike: Global Offensive (CS:GO), coordinated movement is a critical component of high‐level strategic …”
Volltext
Journal Article -
3
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data
ISSN: 1558-1225Veröffentlicht: ACM 14.04.2024Veröffentlicht in Proceedings / International Conference on Software Engineering (14.04.2024)“… Reinforcement learning from demonstrations (RLfD) is a promising approach to improve the exploration efficiency of reinforcement learning (RL …”
Volltext
Tagungsbericht -
4
Preference-Conditioned Language-Guided Abstraction
Veröffentlicht: ACM 11.03.2024Veröffentlicht in 2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (11.03.2024)“… Learning from demonstrations is a common way for users to teach robots, but it is prone to spurious feature correlations …”
Volltext
Tagungsbericht -
5
Aligning Human and Robot Representations
Veröffentlicht: ACM 11.03.2024Veröffentlicht in 2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (11.03.2024)“… they must be aligned. We observe that current learning approaches suffer from representation misalignment, where the robot's learned representation does not capture the human's representation …”
Volltext
Tagungsbericht -
6
Feature Expansive Reward Learning: Rethinking Human Input
ISSN: 2167-2148Veröffentlicht: ACM 09.03.2021Veröffentlicht in 2021 16th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (09.03.2021)“… Our insight is that rather than implicitly learning about the missing feature(s) from demonstrations, the robot should instead ask for data that explicitly teaches it about what …”
Volltext
Tagungsbericht -
7
Joint Goal and Strategy Inference across Heterogeneous Demonstrators via Reward Network Distillation
ISBN: 1450367461, 9781450367462ISSN: 2167-2148Veröffentlicht: New York, NY, USA ACM 09.03.2020Veröffentlicht in 2020 15th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (09.03.2020)“… On the other hand, inverse reinforcement learning (IRL) seeks to learn a reward function from readily-obtained human demonstrations …”
Volltext
Tagungsbericht -
8
Enhancing Safety in Learning from Demonstration Algorithms via Control Barrier Function Shielding
Veröffentlicht: ACM 11.03.2024Veröffentlicht in 2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (11.03.2024)“… Learning from Demonstration (LfD) is a powerful method for non-roboticists end-users to teach robots new tasks, enabling them to customize the robot behavior …”
Volltext
Tagungsbericht -
9
Autonomous Assessment of Demonstration Sufficiency via Bayesian Inverse Reinforcement Learning
Veröffentlicht: ACM 11.03.2024Veröffentlicht in 2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (11.03.2024)“… ? To address this problem, we propose a novel self-assessment approach based on Bayesian inverse reinforcement learning and value-at-risk, enabling learning-from-demonstration ("LfD …”
Volltext
Tagungsbericht -
10
Zero-Shot Learning to Enable Error Awareness in Data-Driven HRI
Veröffentlicht: ACM 11.03.2024Veröffentlicht in 2024 19th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (11.03.2024)“… Data-driven social imitation learning is a minimally-supervised approach to generating robot behaviors for human-robot interaction (HRI …”
Volltext
Tagungsbericht -
11
Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation
ISBN: 9781450343367, 1450343368ISSN: 2167-2148Veröffentlicht: New York, NY, USA ACM 06.03.2017Veröffentlicht in 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI (06.03.2017)“… We first decide which information to share with the user according to their preferences, using a policy trained from human demonstrations …”
Volltext
Tagungsbericht -
12
Track-Assignment Detailed Routing Using Attention-based Policy Model With Supervision
Veröffentlicht: ACM 16.11.2020Veröffentlicht in Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD (16.11.2020)“… In this work, we propose a machine learning driven method for solving the track-assignment detailed routing problem for advanced node analog circuits …”
Volltext
Tagungsbericht -
13
Autonomously Learning One-To-Many Social Interaction Logic from Human-Human Interaction Data
ISBN: 1450367461, 9781450367462ISSN: 2167-2148Veröffentlicht: New York, NY, USA ACM 09.03.2020Veröffentlicht in 2020 15th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (09.03.2020)“… Our proposed system for learning the interaction logic uses neural networks to first learn which customer actions are important to respond to and then learn how the shopkeeper should respond …”
Volltext
Tagungsbericht -
14
State-Aware Configuration Detection for Augmented Reality Step-by-Step Tutorials
ISSN: 2473-0726Veröffentlicht: IEEE 16.10.2023Veröffentlicht in Proceedings - International Symposium on Mixed and Augmented Reality, ISMAR (16.10.2023)“… Presenting tutorials in augmented reality is a compelling application area, but previous attempts have been limited to objects with only a small numbers of …”
Volltext
Tagungsbericht -
15
Sharing Model Framework for Zero‐Shot Sketch‐Based Image Retrieval
ISSN: 0167-7055, 1467-8659Veröffentlicht: Oxford Blackwell Publishing Ltd 01.10.2023Veröffentlicht in Computer graphics forum (01.10.2023)“… Sketch‐based image retrieval (SBIR) is an emerging task in computer vision. Research interests have arisen in solving this problem under the realistic and challenging setting of zero‐shot learning …”
Volltext
Journal Article -
16
Incremental learning of primitive skills from demonstration of a task
ISBN: 1467343935, 9781467343930ISSN: 2167-2121Veröffentlicht: IEEE 01.03.2011Veröffentlicht in 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (01.03.2011)“… In this work, we propose methods for automatically generating primitive skills from the demonstration of a task …”
Volltext
Tagungsbericht -
17
Encoding bi-manual coordination patterns from human demonstrations
ISBN: 1450326587, 9781450326582Veröffentlicht: New York, NY, USA ACM 03.03.2014Veröffentlicht in HRI '14 : proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction : March 3-6, 2014, Bielefeld, Germany (03.03.2014)“… hand configuration and grasp information. Secondly for learning the task we propose a method for extracting task constraints for each arm and coordination patterns between the arms …”
Volltext
Tagungsbericht -
18
Multi-thresholded approach to demonstration selection for interactive robot learning
ISBN: 1605580171, 9781605580173ISSN: 2167-2121Veröffentlicht: New York, NY, USA ACM 12.03.2008Veröffentlicht in 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI) (12.03.2008)“… Effective learning from demonstration techniques enable complex robot behaviors to be taught from a small number of demonstrations …”
Volltext
Tagungsbericht -
19
Enhancing Networked Embedded Systems Using Deep Learning Techniques
Veröffentlicht: IEEE 08.12.2023Veröffentlicht in 2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG) (08.12.2023)“… In addition, using reinforcement learning helps systems behave and use energy more efficiently, creating a more flexible and smart setting …”
Volltext
Tagungsbericht -
20
Addressing Data Scarcity in the Medical Domain: A GPT-Based Approach for Synthetic Data Generation and Feature Extraction
ISSN: 2078-2489, 2078-2489Veröffentlicht: Basel MDPI AG 01.05.2024Veröffentlicht in Information (Basel) (01.05.2024)“… This research confronts the persistent challenge of data scarcity in medical machine learning by introducing a pioneering methodology that harnesses the capabilities of Generative Pre-trained Transformers (GPT …”
Volltext
Journal Article

