Suchergebnisse - Computer Learning AND Pattern Recognition::Uncertainty Management
-
1
Deep Stereo Using Adaptive Thin Volume Representation With Uncertainty Awareness
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2020Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2020)“… We present Uncertainty-aware Cascaded Stereo Network (UCS-Net) for 3D reconstruction from multiple RGB images. Multi-view stereo (MVS …”
Volltext
Tagungsbericht -
2
Rainbow Memory: Continual Learning with a Memory of Diverse Samples
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2021Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2021)“… To enhance the sample diversity in the memory, we propose a novel memory management strategy based on per-sample classification uncertainty and data augmentation, named Rainbow Memory (RM …”
Volltext
Tagungsbericht -
3
Geometric Anchor Correspondence Mining with Uncertainty Modeling for Universal Domain Adaptation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Therefore, in this paper, we propose a Geometric anchor-guided Adversarial and conTrastive learning framework with uncErtainty modeling called GATE to alleviate these issues …”
Volltext
Tagungsbericht -
4
Parameter-free Online Test-time Adaptation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Training state-of-the-art vision models has become prohibitively expensive for researchers and practitioners. For the sake of accessibility and resource reuse, …”
Volltext
Tagungsbericht -
5
Handling the impact of feature uncertainties on SVM: A robust approach based on Sobol sensitivity analysis
ISSN: 0957-4174, 1873-6793Veröffentlicht: New York Elsevier Ltd 01.03.2022Veröffentlicht in Expert systems with applications (01.03.2022)“… SVM is a supervised machine learning method for pattern recognition whose performance depends on the definition of its hyperparameters and the quality of data …”
Volltext
Journal Article -
6
Exploring Data Aggregation in Policy Learning for Vision-Based Urban Autonomous Driving
ISSN: 1063-6919Veröffentlicht: IEEE 01.01.2020Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.01.2020)“… Data aggregation techniques can significantly improve vision-based policy learning within a training environment, e.g …”
Volltext
Tagungsbericht -
7
Emerging artificial intelligence methods in structural engineering
ISSN: 0141-0296, 1873-7323Veröffentlicht: Kidlington Elsevier Ltd 15.09.2018Veröffentlicht in Engineering structures (15.09.2018)“… •The methods of pattern recognition, machine learning, and deep learning are studied.•The advantages of employing novel AI methods in structural engineering are discussed …”
Volltext
Journal Article -
8
Transfer Knowledge from Head to Tail: Uncertainty Calibration under Long-tailed Distribution
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2023Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2023)“… How to estimate the uncertainty of a given model is a crucial problem. Current calibration techniques treat different classes equally and thus implicitly assume …”
Volltext
Tagungsbericht -
9
Geometry and Uncertainty-Aware 3D Point Cloud Class-Incremental Semantic Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2023Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2023)“… Despite the significant recent progress made on 3D point cloud semantic segmentation, the current methods require training data for all classes at once, and …”
Volltext
Tagungsbericht -
10
Conformal deep forest for uncertainty-aware classification
ISSN: 1319-1578, 2213-1248, 1319-1578Veröffentlicht: Cham Springer International Publishing 01.08.2025Veröffentlicht in Journal of King Saud University. Computer and information sciences (01.08.2025)“… Uncertainty in deep learning models significantly impacts their performance, robustness, and reliability, making explicit uncertainty quantification a critical research focus …”
Volltext
Journal Article -
11
Source-Free Progressive Graph Learning for Open-Set Domain Adaptation
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 01.09.2023Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.09.2023)“… , and failure to accurately estimate model predictions' uncertainty. To address these limitations, the Progressive Graph Learning (PGL …”
Volltext
Journal Article -
12
Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition
ISSN: 0360-5442, 1873-6785Veröffentlicht: Oxford Elsevier Ltd 15.03.2022Veröffentlicht in Energy (Oxford) (15.03.2022)“… During the online operation, the proposed EMS executes the designed driving pattern recognition algorithm with V2C assistance to select optimal control rules …”
Volltext
Journal Article -
13
Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning
ISSN: 1932-6203, 1932-6203Veröffentlicht: United States Public Library of Science 01.07.2016Veröffentlicht in PloS one (01.07.2016)“… While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas …”
Volltext
Journal Article -
14
A novel algorithmic approach to model uncertainties associated with sustainable supply chain management using complex spherical fuzzy soft settings
ISSN: 2511-2104, 2511-2112Veröffentlicht: Singapore Springer Nature Singapore 01.06.2025Veröffentlicht in International journal of information technology (Singapore. Online) (01.06.2025)“… This study introduces the complex spherical fuzzy soft set (CSFSS), a sophisticated framework that deals with supplier selection uncertainties …”
Volltext
Journal Article -
15
Uncertainty quantification in automated valuation models with spatially weighted conformal prediction
ISSN: 2364-415X, 2364-4168Veröffentlicht: Cham Springer International Publishing 01.12.2025Veröffentlicht in International journal of data science and analytics (01.12.2025)“… Nonparametric machine learning models, such as random forests and gradient boosted trees, are frequently used to estimate house prices due to their predictive accuracy, but a main drawback …”
Volltext
Journal Article -
16
Guidance for good practice in the application of machine learning in development of toxicological quantitative structure-activity relationships (QSARs)
ISSN: 1932-6203, 1932-6203Veröffentlicht: United States Public Library of Science 10.05.2023Veröffentlicht in PloS one (10.05.2023)“… On account of the pattern-recognition capabilities of the underlying methods, the statistical power …”
Volltext
Journal Article -
17
Active cluster annotation for wafer map pattern classification in semiconductor manufacturing
ISSN: 0957-4174, 1873-6793Veröffentlicht: New York Elsevier Ltd 30.11.2021Veröffentlicht in Expert systems with applications (30.11.2021)“… •Active cluster annotation is proposed for wafer map pattern classification.•High-performance CNN is achieved with reduced annotation cost …”
Volltext
Journal Article -
18
Data Uncertainty (DU)-Former: An Episodic Memory Electroencephalography Classification Model for Pre- and Post-Training Assessment
ISSN: 2306-5354, 2306-5354Veröffentlicht: Switzerland MDPI AG 30.03.2025Veröffentlicht in Bioengineering (Basel) (30.03.2025)“… Episodic memory training plays a crucial role in cognitive enhancement, particularly in addressing age-related memory decline and cognitive disorders …”
Volltext
Journal Article -
19
Review of machine learning and WEAP models for water allocation under climate change
ISSN: 1865-0473, 1865-0481Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2025Veröffentlicht in Earth science informatics (01.03.2025)“… It demonstrates how ML enhances WEAP’s capabilities by improving forecasting accuracy, recognising hydrological patterns, and reducing measurement uncertainties …”
Volltext
Journal Article -
20
Bayesian Deep Learning for Spatial Interpolation in the Presence of Auxiliary Information
ISSN: 1874-8961, 1874-8953Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022Veröffentlicht in Mathematical geosciences (01.04.2022)“… Here, we demonstrate the power of feature learning in a geostatistical context by showing how deep neural networks can automatically learn the complex high-order patterns by which point …”
Volltext
Journal Article