Suchergebnisse - Computational Principles of Motor Control and Learning

  1. 1

    Robotic neurorehabilitation: a computational motor learning perspective von Huang, Vincent S, Krakauer, John W

    ISSN: 1743-0003, 1743-0003
    Veröffentlicht: London BioMed Central 25.02.2009
    Veröffentlicht in Journal of neuroengineering and rehabilitation (25.02.2009)
    “… Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability …”
    Volltext
    Journal Article
  2. 2

    A spiking neural program for sensorimotor control during foraging in flying insects von Rapp, Hannes, Nawrot, Martin Paul

    ISSN: 1091-6490, 1091-6490
    Veröffentlicht: United States 10.11.2020
    “… processing, learning, and motor control. We focus on cast and surge strategies employed by flying insects when foraging within turbulent odor plumes …”
    Weitere Angaben
    Journal Article
  3. 3

    Computational principles of movement neuroscience von Wolpert, Daniel M., Ghahramani, Zoubin

    ISSN: 1097-6256, 1546-1726
    Veröffentlicht: United States Nature Publishing Group 01.11.2000
    Veröffentlicht in Nature neuroscience (01.11.2000)
    “… Unifying principles of movement have emerged from the computational study of motor control …”
    Volltext
    Journal Article
  4. 4

    Cerebellar contributions to motor control and language comprehension: searching for common computational principles von Moberget, Torgeir, Ivry, Richard B.

    ISSN: 0077-8923, 1749-6632, 1749-6632
    Veröffentlicht: United States Blackwell Publishing Ltd 01.04.2016
    Veröffentlicht in Annals of the New York Academy of Sciences (01.04.2016)
    “… The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive …”
    Volltext
    Journal Article
  5. 5

    A Computational Model of Limb Impedance Control Based on Principles of Internal Model Uncertainty von Mitrovic, Djordje, Klanke, Stefan, Osu, Rieko, Kawato, Mitsuo, Vijayakumar, Sethu

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 26.10.2010
    Veröffentlicht in PloS one (26.10.2010)
    “… While there is much experimental evidence available that the nervous system employs such strategies, no generally-valid computational model of impedance control derived from first principles has been proposed so far …”
    Volltext
    Journal Article
  6. 6

    Computational approaches to motor learning by imitation von Schaal, Stefan, Ijspeert, Auke, Billard, Aude

    ISSN: 0962-8436
    Veröffentlicht: England 29.03.2003
    “… previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc …”
    Weitere Angaben
    Journal Article
  7. 7

    Principles of sensorimotor learning von Wolpert, Daniel M., Diedrichsen, Jörn, Flanagan, J. Randall

    ISSN: 1471-003X, 1471-0048, 1471-0048, 1469-3178
    Veröffentlicht: London Nature Publishing Group UK 01.12.2011
    Veröffentlicht in Nature reviews. Neuroscience (01.12.2011)
    “… Key Points Learning movement skills involves a number of interacting components, such as information extraction, decision making, different classes of control, motor learning and its representations …”
    Volltext
    Journal Article
  8. 8

    A Modular Dynamic Sensorimotor Model for Affordances Learning, Sequences Planning, and Tool-Use von Braud, Raphael, Pitti, Alexandre, Gaussier, Philippe

    ISSN: 2379-8920, 2379-8939
    Veröffentlicht: Piscataway IEEE 01.03.2018
    “… This paper proposes a computational model for learning robot control and sequence planning based on the ideomotor principle …”
    Volltext
    Journal Article
  9. 9

    Optimality Principles in Human Point-to-Manifold Reaching Accounting for Muscle Dynamics von Wochner, Isabell, Driess, Danny, Zimmermann, Heiko, Haeufle, Daniel F. B., Toussaint, Marc, Schmitt, Syn

    ISSN: 1662-5188, 1662-5188
    Veröffentlicht: Lausanne Frontiers Research Foundation 15.05.2020
    Veröffentlicht in Frontiers in computational neuroscience (15.05.2020)
    “… Many researchers hypothesize that through evolution, learning, and adaption, the human system has developed optimal control strategies to select between these possibilities …”
    Volltext
    Journal Article
  10. 10

    Adaptation across the 2D population code explains the spatially distributive nature of motor learning von Masselink, Jana, Lappe, Markus

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 01.06.2025
    Veröffentlicht in PLoS computational biology (01.06.2025)
    “… In current computational models on oculomotor learning ‘the’ movement vector is adapted in response to targeting errors …”
    Volltext
    Journal Article
  11. 11

    Reinforcement Learning or Active Inference? von Friston, Karl J., Daunizeau, Jean, Kiebel, Stefan J.

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 29.07.2009
    Veröffentlicht in PloS one (29.07.2009)
    “… This paper questions the need for reinforcement learning or control theory when optimising behaviour …”
    Volltext
    Journal Article
  12. 12

    Model-Free Robust Optimal Feedback Mechanisms of Biological Motor Control von Bian, Tao, Wolpert, Daniel M, Jiang, Zhong-Ping

    ISSN: 1530-888X, 1530-888X
    Veröffentlicht: United States 01.03.2020
    Veröffentlicht in Neural computation (01.03.2020)
    “… Nevertheless, the central nervous system (CNS) can gracefully coordinate our movements. Most learning frameworks rely on the internal model principle, which requires …”
    Weitere Angaben
    Journal Article
  13. 13

    Human decision making anticipates future performance in motor learning von Moskowitz, Joshua B., Gale, Daniel J., Gallivan, Jason P., Wolpert, Daniel M., Flanagan, J. Randall

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 01.02.2020
    Veröffentlicht in PLoS computational biology (01.02.2020)
    “… Here we asked whether, in the context of motor learning where errors decrease across trials, people take into account their future, improved performance so as to make optimal decisions to maximize reward …”
    Volltext
    Journal Article
  14. 14

    Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition von Rohde, Marieke, Narioka, Kenichi, Steil, Jochen J., Klein, Lina K., Ernst, Marc O.

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 01.03.2019
    Veröffentlicht in PLoS computational biology (01.03.2019)
    “… is underdetermined because a goal can often be achieved by many different movements (motor redundancy). How humans learn to resolve motor redundancy and by which principles they explore high-dimensional motor spaces has hardly been investigated …”
    Volltext
    Journal Article
  15. 15

    Modular Learning Systems for Continual Control: Neural Principles and Computational Models von Amematsro, Elom A

    ISBN: 9798291575284
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2025
    “… : A Framework for Motor Control introduces a probabilistic framework for motor control that unifies principles from optimal feedback control and dynamical systems theory …”
    Volltext
    Dissertation
  16. 16

    Analogous computations in working memory input, output and motor gating: Electrophysiological and computational modeling evidence von Rac-Lubashevsky, Rachel, Frank, Michael J.

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 01.06.2021
    Veröffentlicht in PLoS computational biology (01.06.2021)
    “… ), from working-memory (output gating), and of responses (motor gating) and tested the neural dynamics and computational principles that support …”
    Volltext
    Journal Article
  17. 17

    The Concept of Transmission Coefficient Among Different Cerebellar Layers: A Computational Tool for Analyzing Motor Learning von Solouki, Saeed, Bahrami, Fariba, Janahmadi, Mahyar

    ISSN: 1662-5110, 1662-5110
    Veröffentlicht: Switzerland Frontiers Research Foundation 27.08.2019
    Veröffentlicht in Frontiers in neural circuits (27.08.2019)
    “… High-fidelity regulation of information transmission among cerebellar layers is mainly provided by synaptic plasticity. Therefore, determining the regulatory …”
    Volltext
    Journal Article
  18. 18

    Action and behavior: a free-energy formulation von Friston, Karl J, Daunizeau, Jean, Kilner, James, Kiebel, Stefan J

    ISSN: 0340-1200, 1432-0770, 1432-0770
    Veröffentlicht: Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.03.2010
    Veröffentlicht in Biological cybernetics (01.03.2010)
    “… We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz's agenda to understand the brain in terms of energy minimization …”
    Volltext
    Journal Article
  19. 19

    A neural active inference model of perceptual-motor learning von Yang, Zhizhuo, Diaz, Gabriel J., Fajen, Brett R., Bailey, Reynold, Ororbia, Alexander G.

    ISSN: 1662-5188, 1662-5188
    Veröffentlicht: Switzerland Frontiers Research Foundation 20.02.2023
    Veröffentlicht in Frontiers in computational neuroscience (20.02.2023)
    “… The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience that can produce human-like behavior through reward-based learning …”
    Volltext
    Journal Article
  20. 20

    Inference of affordances and active motor control in simulated agents von Scholz, Fedor, Gumbsch, Christian, Otte, Sebastian, Butz, Martin V.

    ISSN: 1662-5218, 1662-5218
    Veröffentlicht: Lausanne Frontiers Research Foundation 11.08.2022
    Veröffentlicht in Frontiers in neurorobotics (11.08.2022)
    “… Flexible, goal-directed behavior is a fundamental aspect of human life. Based on the free energy minimization principle, the theory of active inference …”
    Volltext
    Journal Article