Suchergebnisse - Clustered Multi-Task Learning

  1. 1

    Quality prediction for multi-grade batch process using sparse flexible clustered multi-task learning von Yamaguchi, Takafumi, Yamashita, Yoshiyuki

    ISSN: 0098-1354
    Veröffentlicht: Elsevier Ltd 01.07.2021
    Veröffentlicht in Computers & chemical engineering (01.07.2021)
    “… These methods combine the features of two techniques: the first is a flexible clustered multi-task learning method, which utilizes data from other grades effectively …”
    Volltext
    Journal Article
  2. 2

    Flexible Clustered Multi-Task Learning by Learning Representative Tasks von Zhou, Qiang, Zhao, Qi

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.02.2016
    “… Among various MTL methods, clustered multi-task learning (CMTL) assumes that all tasks can be clustered into groups and attempts to learn the underlying cluster structure from the training data …”
    Volltext
    Journal Article
  3. 3

    Adaptive dual graph regularization for clustered multi-task learning von Liu, Cheng, Li, Rui, Chen, Sentao, Zheng, Lin, Jiang, Dazhi

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 14.03.2024
    Veröffentlicht in Neurocomputing (Amsterdam) (14.03.2024)
    “… Toward this aim, we propose a clustered multi-task learning approach that collaboratively learns the cluster structure for both task and feature level effects …”
    Volltext
    Journal Article
  4. 4

    Clustered Multi-Task Learning for Automatic Radar Target Recognition von Li, Cong, Bao, Weimin, Xu, Luping, Zhang, Hua

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 27.09.2017
    Veröffentlicht in Sensors (Basel, Switzerland) (27.09.2017)
    “… In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition …”
    Volltext
    Journal Article
  5. 5

    HEp-2 cells Classification via clustered multi-task learning von Liu, Anan, Lu, Yao, Nie, Weizhi, Su, Yuting, Yang, Zhaoxuan

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 26.06.2016
    Veröffentlicht in Neurocomputing (Amsterdam) (26.06.2016)
    “… This paper proposes a clustered multi-task learning-based method for automated HEp-2 cells Classification …”
    Volltext
    Journal Article
  6. 6

    Clustered Federated Multi-Task Learning: A Communication-and-Computation Efficient Sparse Sharing Approach von Ai, Yuhan, Chen, Qimei, Zhu, Guangxu, Wen, Dingzhu, Jiang, Hao, Zeng, Jun, Li, Ming

    ISSN: 1536-1276, 1558-2248
    Veröffentlicht: New York IEEE 01.06.2025
    Veröffentlicht in IEEE transactions on wireless communications (01.06.2025)
    “… Federated multi-task learning (FMTL) is a promising technology to tackle one of the most severe non-independent and identically distributed (non-IID …”
    Volltext
    Journal Article
  7. 7

    A Two-stage Clustered Multi-Task Learning method for operational optimization in Chemical Mechanical Polishing von Duan, Yunqiang, Liu, Min, Dong, Mingyu, Wu, Cheng

    ISSN: 0959-1524, 1873-2771
    Veröffentlicht: Elsevier Ltd 01.11.2015
    Veröffentlicht in Journal of process control (01.11.2015)
    “… In this paper, a Two-stage Clustered Multi-Task Learning method is proposed for the above modelling problem with small sample size, in which the proposed Probability-based Task Clustering algorithm …”
    Volltext
    Journal Article
  8. 8

    Clustered Federated Multi-Task Learning with Non-IID Data von Xiao, Yao, Shu, Jiangang, Jia, Xiaohua, Huang, Hejiao

    ISSN: 2690-5965
    Veröffentlicht: IEEE 01.12.2021
    “… To achieve the communication-efficiency and high accuracy with non-IID data, we propose a clustered federated multi-task learning by exploring client clustering and multi-task learning …”
    Volltext
    Tagungsbericht
  9. 9

    Clustered Federated Multi-Task Learning on Non-IID Data with Enhanced Privacy von Shu, Jiangang, Yang, Tingting, Liao, Xinying, Chen, Farong, Xiao, Yao, Yang, Kan, Jia, Xiaohua

    ISSN: 2327-4662
    Veröffentlicht: IEEE 13.12.2022
    Veröffentlicht in IEEE internet of things journal (13.12.2022)
    “… To eliminate the limitation of full-participation, we explore multi-task learning associated with model clustering, and first propose a clustered federated multi-task learning to achieve the multual …”
    Volltext
    Journal Article
  10. 10

    Clustered Multi-Task Sequence-to-Sequence Learning for Autonomous Vehicle Repositioning von Lee, Sangmin, Lim, Dae-Eun, Kang, Younkook, Kim, Hae Joong

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2021
    Veröffentlicht in IEEE access (2021)
    “… Clustered multi-task learning, which aims to leverage the generalization performance over clustered tasks, has shown an outstanding performance in various machine learning applications …”
    Volltext
    Journal Article
  11. 11

    Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints von Sattler, Felix, Muller, Klaus-Robert, Samek, Wojciech

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: Piscataway IEEE 01.08.2021
    “… To address this issue, we present clustered FL (CFL), a novel federated multitask learning (FMTL …”
    Volltext
    Journal Article
  12. 12

    Learning to segment clustered amoeboid cells from brightfield microscopy via multi-task learning with adaptive weight selection von Sarkar, Rituparna, Mukherjee, Suvadip, Labruyere, Elisabeth, Olivo-Marin, Jean-Christophe

    Veröffentlicht: IEEE 10.01.2021
    “… In this regard, we introduce a novel supervised technique for cell segmentation in a multitask learning paradigm …”
    Volltext
    Tagungsbericht
  13. 13

    CMA-BP: A Clustered Multi-Task Learning and Branch Attention Based Branch Predictor von Li, Ming, Xu, Rucong, Zhang, Hexu, Li, Lin, Li, Yun

    Veröffentlicht: IEEE 06.10.2024
    “… ) branches per benchmark in SPEC 2017 by current neural network methods. To improve, this paper proposed a Clustered Multi-task Learning and Branch Attention Mechanism-Based Branch Predictor (CMA-BP …”
    Volltext
    Tagungsbericht
  14. 14

    GIFGIF+: Collecting emotional animated GIFs with clustered multi-task learning von Chen, Weixuan, Rudovic, Ognjen Oggi, Picard, Rosalind W.

    ISSN: 2156-8111
    Veröffentlicht: IEEE 01.10.2017
    “… Existing GIF datasets with emotion labels are too small for training contemporary machine learning models, so we propose a semi-automatic method to collect emotional animated GIFs from the Internet …”
    Volltext
    Tagungsbericht
  15. 15

    Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition von Liu, An-An, Su, Yu-Ting, Nie, Wei-Zhi, Kankanhalli, Mohan

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.01.2017
    “… This paper proposes a hierarchical clustering multi-task learning (HC-MTL) method for joint human action grouping and recognition …”
    Volltext
    Journal Article
  16. 16

    Clustered Federated Multitask Learning on Non-IID Data With Enhanced Privacy von Shu, Jiangang, Yang, Tingting, Liao, Xinying, Chen, Farong, Xiao, Yao, Yang, Kan, Jia, Xiaohua

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 15.02.2023
    Veröffentlicht in IEEE internet of things journal (15.02.2023)
    “… To eliminate the limitation of full-participation, we explore multitask learning associated with model clustering, and first propose a clustered FMTL to achieve the multual-task learning on non-IID …”
    Volltext
    Journal Article
  17. 17

    Fair Selection of Edge Nodes to Participate in Clustered Federated Multitask Learning von Albaseer, Abdullatif Mohammed, Abdallah, Mohamed, Al-Fuqaha, Ala, Seid, Abegaz Mohammed, Erbad, Aiman, Dobre, Octavia A.

    ISSN: 1932-4537, 1932-4537
    Veröffentlicht: New York IEEE 01.06.2023
    “… Clustered federated Multitask learning is introduced as an efficient technique when data is unbalanced and distributed amongst clients in a non-independent and identically distributed manner …”
    Volltext
    Journal Article
  18. 18

    Bi-label Propagation for Generic Multiple Object Tracking von Wenhan Luo, Tae-kyun Kim, Stenger, Bjorn, Xiaowei Zhao, Cipolla, Roberto

    ISSN: 1063-6919, 1063-6919
    Veröffentlicht: IEEE 01.06.2014
    “… To propagate the class label, we adopt clustered Multiple Task Learning (cMTL) while enforcing spatio-temporal consistency and show that this improves the performance when given limited training data …”
    Volltext
    Tagungsbericht Journal Article
  19. 19

    User-Sensitive Recommendation Ensemble with Clustered Multi-Task Learning von Wang, Menghan, Zheng, Xiaolin, Zhang, Kun

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 28.04.2018
    Veröffentlicht in arXiv.org (28.04.2018)
    “… We first cluster users based on the recommendation predictions, then we use multi-task learning to learn the user-sensitive ensemble function for the users …”
    Volltext
    Paper
  20. 20

    Distributed Clustering for Cooperative Multi-Task Learning Networks von Li, Jiani, Wang, Weihan, Abbas, Waseem, Koutsoukos, Xenofon

    ISSN: 2327-4697, 2334-329X
    Veröffentlicht: Piscataway IEEE 01.11.2023
    “… This paper focuses on clustered multi-task learning, where agents are partitioned into clusters with distinct objectives, and agents in the same cluster share the same objective …”
    Volltext
    Journal Article