Suchergebnisse - Characterization and Detection of Android Malware

  1. 1

    KronoDroid: Time-based Hybrid-featured Dataset for Effective Android Malware Detection and Characterization von Guerra-Manzanares, Alejandro, Bahsi, Hayretdin, Nõmm, Sven

    ISSN: 0167-4048, 1872-6208
    Veröffentlicht: Amsterdam Elsevier Ltd 01.11.2021
    Veröffentlicht in Computers & security (01.11.2021)
    “… ). Critical factors to take into account when aiming to build more effective, robust, and long-lasting Android malware detection systems …”
    Volltext
    Journal Article
  2. 2
  3. 3

    Deep Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions von Nguyet Quang Do, Ali Selamat, Ondrej Krejcar, Enrique Herrera-Viedma, Hamido Fujita

    ISSN: 2169-3536
    Veröffentlicht: Institute of Electrical and Electronics Engineers (IEEE) 01.01.2022
    Veröffentlicht in IEEE Access (01.01.2022)
    Volltext
    Journal Article
  4. 4

    Multilayer Framework for Botnet Detection Using Machine Learning Algorithms von Wan Nur Hidayah Ibrahim, Syahid Anuar, Ali Selamat, Ondrej Krejcar, Ruben Gonzalez Crespo, Enrique Herrera-Viedma, Hamido Fujita

    ISSN: 2169-3536
    Veröffentlicht: Institute of Electrical and Electronics Engineers (IEEE) 01.01.2021
    Veröffentlicht in IEEE Access (01.01.2021)
    Volltext
    Journal Article
  5. 5

    Android malware concept drift using system calls: Detection, characterization and challenges von Guerra-Manzanares, Alejandro, Luckner, Marcin, Bahsi, Hayretdin

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: Elsevier Ltd 15.11.2022
    Veröffentlicht in Expert systems with applications (15.11.2022)
    “… •Demonstrates the existence of concept drift issues in Android malware detection …”
    Volltext
    Journal Article
  6. 6

    Towards a Network-Based Framework for Android Malware Detection and Characterization von Lashkari, Arash Habibi, A.Kadir, Andi Fitriah, Gonzalez, Hugo, Mbah, Kenneth Fon, A. Ghorbani, Ali

    Veröffentlicht: IEEE 01.08.2017
    “… Mobile malware is so pernicious and on the rise, accordingly having a fast and reliable detection system is necessary for the users …”
    Volltext
    Tagungsbericht
  7. 7

    Android Malware: Detection, Characterization, and Mitigation von Zhou, Yajin

    ISBN: 1339761998, 9781339761992
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2015
    “… These malicious apps have posed serious threats to user security and privacy. The primary goal of my research is to understand and mitigate the Android malware threats …”
    Volltext
    Dissertation
  8. 8

    Dissecting Android Malware: Characterization and Evolution von Zhou, Yajin, Jiang, Xuxian

    ISBN: 9781467312448, 1467312444
    ISSN: 1081-6011
    Veröffentlicht: IEEE 01.05.2012
    Veröffentlicht in 2012 IEEE Symposium on Security and Privacy (01.05.2012)
    “… The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android …”
    Volltext
    Tagungsbericht
  9. 9

    DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling von Haipeng Cai, Na Meng, Ryder, Barbara, Yao, Daphne

    ISSN: 1556-6013, 1556-6021
    Veröffentlicht: New York IEEE 01.06.2019
    “… Most existing Android malware detection and categorization techniques are static approaches, which suffer from evasion attacks, such as obfuscation …”
    Volltext
    Journal Article
  10. 10

    Lightweight, Effective Detection and Characterization of Mobile Malware Families von Elish, Karim O., Elish, Mahmoud O., Almohri, Hussain M. J.

    ISSN: 0018-9340, 1557-9956
    Veröffentlicht: New York IEEE 01.11.2022
    Veröffentlicht in IEEE transactions on computers (01.11.2022)
    “… Despite numerous approaches and previous studies to develop solutions for detecting and preventing Android malware, the rapid continuous development of new malware variants requires a careful …”
    Volltext
    Journal Article
  11. 11

    Uncovering the Face of Android Ransomware: Characterization and Real-Time Detection von Chen, Jing, Wang, Chiheng, Zhao, Ziming, Chen, Kai, Du, Ruiying, Ahn, Gail-Joon

    ISSN: 1556-6013, 1556-6021
    Veröffentlicht: IEEE 01.05.2018
    “… In recent years, we witnessed a drastic increase of ransomware, especially on popular mobile platforms including Android …”
    Volltext
    Journal Article
  12. 12

    DeepFlow: Deep learning-based malware detection by mining Android application for abnormal usage of sensitive data von Dali Zhu, Hao Jin, Ying Yang, Di Wu, Weiyi Chen

    Veröffentlicht: IEEE 01.07.2017
    “… Traditional malware detection approaches based on signatures or abnormal behaviors are invalid when dealing with novel malware …”
    Volltext
    Tagungsbericht
  13. 13

    MCGDroid: An android malware classification method based on multi-feature class-call graph characterization von He, Mingkun, Ge, Jike, Chen, Zuqin, Ling, Jin, Kong, Weiquan

    ISSN: 0167-4048
    Veröffentlicht: Elsevier Ltd 01.01.2026
    Veröffentlicht in Computers & security (01.01.2026)
    “… Malicious software (malware) attacks constitute a major category of security risks affecting the Android operating system …”
    Volltext
    Journal Article
  14. 14

    Android Malware Detection: an Eigenspace Analysis Approach von Yerima, Suleiman Y, Sezer, Sakir, Muttik, Igor

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 27.07.2016
    Veröffentlicht in arXiv.org (27.07.2016)
    “… Hence, in this paper we propose and evaluate a machine learning based approach based on eigenspace analysis for Android malware detection using features derived from static analysis characterization …”
    Volltext
    Paper
  15. 15

    SAC: Collaborative learning of structure and content features for Android malware detection framework von Yang, Jin, Liang, Huijia, Ren, Hang, Jia, Dongqing, Wang, Xin

    ISSN: 0925-2312
    Veröffentlicht: Elsevier B.V 07.07.2025
    Veröffentlicht in Neurocomputing (Amsterdam) (07.07.2025)
    “… With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks …”
    Volltext
    Journal Article
  16. 16

    An Empirical Study on Android Malware Characterization by Social Network Analysis von Zhao, Haojun, Wu, Yueming, Zou, Deqing, Jin, Hai

    ISSN: 0018-9529, 1558-1721
    Veröffentlicht: New York IEEE 01.03.2024
    Veröffentlicht in IEEE transactions on reliability (01.03.2024)
    “… Android malware detection has always been a hot research field. Prior work has validated that graph-based Android malware detection methods are effective …”
    Volltext
    Journal Article
  17. 17

    Android malware detection: An eigenspace analysis approach von Yerima, Suleiman Y., Sezer, Sakir, Muttik, Igor

    Veröffentlicht: IEEE 01.07.2015
    Veröffentlicht in 2015 Science and Information Conference (SAI) (01.07.2015)
    “… Hence, in this paper we propose and evaluate a machine learning based approach based on eigenspace analysis for Android malware detection using features derived from static analysis characterization …”
    Volltext
    Tagungsbericht
  18. 18
  19. 19

    An Android Malware Detection Approach Using Weight-Adjusted Deep Learning von Li, Wenjia, Wang, Zi, Cai, Juecong, Cheng, Sihua

    Veröffentlicht: IEEE 01.03.2018
    “… ) which severely threaten the security of Android smartphones, we propose an Android malware characterization and identification approach that uses deep learning algorithm to address the urgent need for malware detection …”
    Volltext
    Tagungsbericht
  20. 20

    Android Malware Characterization Using Metadata and Machine Learning Techniques von Guzmán, Antonio, Muñoz, Alfonso, Hernández, José Alberto, Martín, Ignacio

    ISSN: 1939-0114, 1939-0122
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
    Veröffentlicht in Security and communication networks (01.01.2018)
    “… ) other features publicly available at Android markets are more relevant in detecting malware, such as the application developer and certificate issuer; and (3 …”
    Volltext
    Journal Article