Suchergebnisse - Brain Based Learning Module

  1. 1

    THE CIREMAI MOUNTAIN CURRICULUM IN A BRAIN-BASED LEARNING E-MODULE: AN EFFORT TO ENHANCE STUDENTS’ MATHEMATICAL CREATIVE THINKING ABILITY von Adiastuty, Nuranita, Aeni, Dilla Dzahrotul, Syafari, Rahayu

    ISSN: 2086-0234, 2579-7530
    Veröffentlicht: 09.09.2025
    Veröffentlicht in Jurnal pendidikan matematika dan IPA (Online) (09.09.2025)
    “… This study aims to develop a Brain-Based Learning (BBL) e-module based on the Gunung Ciremai Curriculum to enhance junior high school students' mathematical creative thinking on plane figures …”
    Volltext
    Journal Article
  2. 2

    Development of Teaching-Based Modules Brain Based Learning by Using Games in Mathematics Learning at Yapis Ranting 2 Middle School Timika von Hanudin, Sub, Herwin, Herwin, Rasul, A. Rasul

    ISSN: 2715-8799, 2715-9108
    Veröffentlicht: 01.12.2024
    Veröffentlicht in Abdi Masyarakat (01.12.2024)
    “… The aim of this research is to determine the feasibility of developing a brain-based learning mathematics module using a crossword puzzle game as seen from the level of validity, practicality and effectiveness …”
    Volltext
    Journal Article
  3. 3

    Improving Students Mathematical Critical Thinking Ability With Learning Modules Using Brain-Based Learning Models von Asfar, Nisa Ulkhairat, Permana, Dony, Fauzan, Ahmad, Yarman, Yarman

    ISSN: 2580-3573, 2580-2437
    Veröffentlicht: 06.06.2022
    Veröffentlicht in Numerical (Online) (06.06.2022)
    “… Mathematical critical thinking skills focus on activities in analyzing a more specific idea. Developing a learning module using a brain-based learning model is necessary to improve mathematical critical thinking skills …”
    Volltext
    Journal Article
  4. 4

    PENGEMBANGAN MODUL BERBASIS BRAIN BASED LEARNING PADA POKOK BAHASAN BARISAN DAN DERET ARITMATIKA TERHADAP PEMAHAMAN KONSEP SISWA: PENGEMBANGAN MODUL BERBASIS BRAIN BASED LEARNING PADA POKOK BAHASAN BARISAN DAN DERET ARITMATIKA TERHADAP PEMAHAMAN KONSEP SISWA von Neno, Dewi Mariana, Yusuf, St. Muthmainnah, Fatmawati, Agustin

    ISSN: 2721-5539, 2721-5539
    Veröffentlicht: 19.05.2024
    Veröffentlicht in MEGA: Jurnal Pendidikan Matematika (19.05.2024)
    “… This study aims to develop a Brain Based Learning – based module on the subject of arithmetic sequences and series onstudentsâ …”
    Volltext
    Journal Article
  5. 5
  6. 6

    Optimization Driven Spike Deep Belief Neural Network classifier: a deep-learning based Multichannel Spike Sorting Neural Signal Processor (NSP) module for high-channel-count Brain Machine Interfaces (BMIs) von Reddy, Vanga Karunakar, Melingi, Sunil Babu, Kumar, Ch. V. M. S. N. Pavan, Kumar, K. Ashok, Mojjada, Ramesh Kumar

    ISSN: 0269-2821, 1573-7462
    Veröffentlicht: Dordrecht Springer Netherlands 01.11.2023
    Veröffentlicht in The Artificial intelligence review (01.11.2023)
    “… An Optimization Driven Spike Deep Belief Neural Networks is a type of neural network that is inspired by the functioning of the human brain …”
    Volltext
    Journal Article
  7. 7

    Convolutional Block Attention Module-based Deep Learning Model for MRI Brain Tumor Identification (ResNet-CBAM) von Shyamala, N., Mahaboobbasha, S.

    Veröffentlicht: IEEE 18.09.2024
    “… A deep learning approach utilizing the ResNet-50 model integrated with Convolutional Block Attention Module (CBAM …”
    Volltext
    Tagungsbericht
  8. 8

    D-LMBmap: a fully automated deep-learning pipeline for whole-brain profiling of neural circuitry von Li, Zhongyu, Shang, Zengyi, Liu, Jingyi, Zhen, Haotian, Zhu, Entao, Zhong, Shilin, Sturgess, Robyn N., Zhou, Yitian, Hu, Xuemeng, Zhao, Xingyue, Wu, Yi, Li, Peiqi, Lin, Rui, Ren, Jing

    ISSN: 1548-7091, 1548-7105, 1548-7105
    Veröffentlicht: New York Nature Publishing Group US 01.10.2023
    Veröffentlicht in Nature methods (01.10.2023)
    “… To address these challenges, we developed D-LMBmap, an end-to-end package providing an integrated workflow containing three modules based on deep-learning algorithms for whole-brain connectivity mapping …”
    Volltext
    Journal Article
  9. 9

    A Transfer Learning-Based Approach for Brain Tumor Classification with Attention Module von Khan, Md. Ariful Haque, Hossain, Md Shakhawat

    Veröffentlicht: IEEE 13.02.2025
    “… This study presents a system for classifying brain tumors using a transfer learning model enhanced by a self-attention mechanism …”
    Volltext
    Tagungsbericht
  10. 10
  11. 11

    Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI von Wang, Qianqian, Wang, Wei, Fang, Yuqi, Yap, Pew-Thian, Zhu, Hongtu, Li, Hong-Jun, Qiao, Lishan, Liu, Mingxia

    ISSN: 0018-9294, 1558-2531, 1558-2531
    Veröffentlicht: United States IEEE 01.08.2024
    Veröffentlicht in IEEE transactions on biomedical engineering (01.08.2024)
    “… ). However, existing learning-based methods cannot adequately utilize such brain modularity prior …”
    Volltext
    Journal Article
  12. 12

    ARM-Net: Improved MRI brain tumor segmentation method based on attentional mechanism and residual module von MingHu

    ISSN: 2032-9253, 2032-9253
    Veröffentlicht: Ghent European Alliance for Innovation (EAI) 26.07.2024
    Veröffentlicht in EAI Endorsed Transactions on e-Learning (26.07.2024)
    “… It proposes ARM-Net: an improved method for MRI brain tumor segmentation based on attention mechanisms and residual …”
    Volltext
    Journal Article
  13. 13

    The Effectiveness of OsiriX and the Anatomage Virtual Dissection Table in Enhancing Neuroanatomy and Neuroradiology Teaching von Sadiq, Zuhair, Laswi, Ibrahim, Raoof, Ameed

    ISSN: 1179-7258, 1179-7258
    Veröffentlicht: Dove Medical Press Limited 01.01.2023
    Veröffentlicht in Advances in medical education and practice (01.01.2023)
    “… : This aim of this study is to assess the effectiveness of online case- based learning modules in teaching medical students about the anatomy and radiology of different types of brain tumors. Methods …”
    Volltext
    Journal Article
  14. 14

    Brain signals of a Surprise-Actor-Critic model: Evidence for multiple learning modules in human decision making von Liakoni, Vasiliki, Lehmann, Marco P., Modirshanechi, Alireza, Brea, Johanni, Lutti, Antoine, Gerstner, Wulfram, Preuschoff, Kerstin

    ISSN: 1053-8119, 1095-9572, 1095-9572
    Veröffentlicht: United States Elsevier Inc 01.02.2022
    Veröffentlicht in NeuroImage (Orlando, Fla.) (01.02.2022)
    “… Current brain imaging of learning modules is limited by (i) simple experimental paradigms, (ii …”
    Volltext
    Journal Article
  15. 15

    Localization and Registration of 2D Histological Mouse Brain Images in 3D Atlas Space von Sadeghi, Maryam, Ramos-Prats, Arnau, Neto, Pedro, Castaldi, Federico, Crowley, Devin, Matulewicz, Pawel, Paradiso, Enrica, Freysinger, Wolfgang, Ferraguti, Francesco, Goebel, Georg

    ISSN: 1539-2791, 1559-0089, 1559-0089
    Veröffentlicht: New York Springer US 01.07.2023
    Veröffentlicht in Neuroinformatics (Totowa, N.J.) (01.07.2023)
    “… To accurately explore the anatomical organization of neural circuits in the brain, it is crucial to map the experimental brain data onto a standardized system of coordinates …”
    Volltext
    Journal Article
  16. 16

    Deep Dag Learning of Effective Brain Connectivity for FMRI Analysis von Yu, Yue, Kan, Xuan, Cui, Hejie, Xu, Ran, Zheng, Yujia, Song, Xiangchen, Zhu, Yanqiao, Zhang, Kun, Nabi, Razieh, Guo, Ying, Zhang, Chao, Yang, Carl

    ISSN: 1945-7928, 1945-8452
    Veröffentlicht: United States IEEE 01.04.2023
    “… ), which are noisy and can lead to inferior results for GNN models. To better adapt GNNs for fMRI analysis, we propose DABNet, a Deep DAG learning framework based on Brain Networks for fMRI analysis …”
    Volltext
    Tagungsbericht Journal Article
  17. 17

    Assessing the carbon footprint of soccer events through a lightweight CNN model utilizing transfer learning in the pursuit of carbon neutrality von Liu, Zhewei, Guo, Dayong

    ISSN: 2296-701X, 2296-701X
    Veröffentlicht: Frontiers Media S.A 24.07.2023
    Veröffentlicht in Frontiers in ecology and evolution (24.07.2023)
    “… context.MethodsOur proposed lightweight CNN model uses a downsampling module based on the human brain for efficient information processing and a transfer learning-based module to speed up the training progress …”
    Volltext
    Journal Article
  18. 18

    An improved attention module based on nnU-Net for segmenting primary central nervous system lymphoma (PCNSL) in MRI images1 von Zhao, Chen, Song, Jianping, Yuan, Yifan, Chu, Ying-Hua, Hsu, Yi-Cheng, Huang, Qiu

    ISSN: 1095-9114, 1095-9114
    Veröffentlicht: United States 2024
    Veröffentlicht in Journal of X-ray science and technology (2024)
    “… an improved attention module based on nnUNet for automated segmentation. We collected 114 T1 MRI images of patients in the Huashan Hospital, Shanghai …”
    Weitere Angaben
    Journal Article
  19. 19

    Integration of cooperative and opposing molecular programs drives learning-associated behavioral plasticity von Nelson, Jessica C., Shoenhard, Hannah, Granato, Michael

    ISSN: 1553-7404, 1553-7390, 1553-7404
    Veröffentlicht: United States Public Library of Science 27.03.2023
    Veröffentlicht in PLoS genetics (27.03.2023)
    “… an unexpected level of complexity. How the vertebrate brain integrates these various pathways to accomplish habituation learning, whether they act independently or intersect with one another, and whether they act via divergent …”
    Volltext
    Journal Article
  20. 20

    A whole brain probabilistic generative model: Toward realizing cognitive architectures for developmental robots von Taniguchi, Tadahiro, Yamakawa, Hiroshi, Nagai, Takayuki, Doya, Kenji, Sakagami, Masamichi, Suzuki, Masahiro, Nakamura, Tomoaki, Taniguchi, Akira

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.06.2022
    Veröffentlicht in Neural networks (01.06.2022)
    “… This approach is based on two ideas: (1) brain-inspired AI, learning human brain architecture to build human-level intelligence, and (2 …”
    Volltext
    Journal Article