Suchergebnisse - Autoencoder-based phenotyping

Andere Suchmöglichkeiten:

  • Treffer 1 - 10 von 10
Treffer weiter einschränken
  1. 1

    Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers von Sergouniotis, Panagiotis I, Diakite, Adam, Gaurav, Kumar, Birney, Ewan, Fitzgerald, Tomas

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 26.12.2024
    Veröffentlicht in Bioinformatics (Oxford, England) (26.12.2024)
    “… Motivation Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants and imaging-derived …”
    Volltext
    Journal Article
  2. 2

    ODBAE: a high-performance model identifying complex phenotypes in high-dimensional biological datasets von Shen, Yafei, Zhang, Tao, Liu, Zhiwei, Kostelidou, Kalliopi, Xu, Ying, Yang, Ling

    ISSN: 2399-3642, 2399-3642
    Veröffentlicht: London Nature Publishing Group UK 02.10.2025
    Veröffentlicht in Communications biology (02.10.2025)
    “… ), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods …”
    Volltext
    Journal Article
  3. 3

    Data driven discovery and quantification of hyperspectral leaf reflectance phenotypes across a maize diversity panel von Tross, Michael C., Grzybowski, Marcin W., Jubery, Talukder Z., Grove, Ryleigh J., Nishimwe, Aime V., Torres‐Rodriguez, J. Vladimir, Sun, Guangchao, Ganapathysubramanian, Baskar, Ge, Yufeng, Schnable, James C.

    ISSN: 2578-2703, 2578-2703
    Veröffentlicht: Guilford John Wiley & Sons, Inc 01.12.2024
    Veröffentlicht in Plant phenome journal (01.12.2024)
    “… Estimates of plant traits derived from hyperspectral reflectance data have the potential to efficiently substitute for traits, which are time or labor …”
    Volltext
    Journal Article
  4. 4

    Interpretable Fine‐Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning von Wang, Chuangqi, Choi, Hee June, Woodbury, Lucy, Lee, Kwonmoo

    ISSN: 2198-3844, 2198-3844
    Veröffentlicht: Germany John Wiley & Sons, Inc 01.11.2024
    Veröffentlicht in Advanced science (01.11.2024)
    “… To tackle these challenges, a self‐training deep learning framework designed for fine‐grained and interpretable phenotyping is presented …”
    Volltext
    Journal Article
  5. 5

    Deep learning for genomic selection of aquatic animals von Wang, Yangfan, Ni, Ping, Sturrock, Marc, Zeng, Qifan, Wang, Bo, Bao, Zhenmin, Hu, Jingjie

    ISSN: 2662-1746, 2662-1746
    Veröffentlicht: Singapore Springer Nature Singapore 01.11.2024
    Veröffentlicht in Marine life science & technology (01.11.2024)
    “… in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury …”
    Volltext
    Journal Article
  6. 6

    ODBAE: a high-performance model identifying complex phenotypes in high-dimensional biological datasets von Shen, Yafei, Zhang, Tao, Liu, Zhiwei, Kostelidou, Kalliopi, Xu, Ying, Yang, Ling

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.10.2024
    Veröffentlicht in arXiv.org (23.10.2024)
    “… ), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods …”
    Volltext
    Paper
  7. 7

    Uncovering Interpretable Fine-Grained Phenotypes of Subcellular Dynamics through Unsupervised Self-Training of Deep Neural Networks von Wang, Chuangqi, Choi, Hee June, Woodbury, Lucy, Lee, Kwonmoo

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 13.01.2024
    Veröffentlicht in bioRxiv (13.01.2024)
    “… Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal …”
    Volltext
    Paper
  8. 8

    Deep Phenotyping of Obesity: Electronic Health Record–Based Temporal Modeling Study von Ruan, Xiaoyang, Lu, Shuyu, Wang, Liwei, Wen, Andrew, Murali, Sameer, Liu, Hongfang

    ISSN: 1438-8871, 1439-4456, 1438-8871
    Veröffentlicht: Canada Journal of Medical Internet Research 20.08.2025
    Veröffentlicht in Journal of medical Internet research (20.08.2025)
    “… the feasibility, data requirements, clustering patterns, and challenges associated with EHR-based obesity deep phenotyping …”
    Volltext
    Journal Article
  9. 9

    Deep phenotyping obesity using EHR data: Promise, Challenges, and Future Directions von Ruan, Xiaoyang, Lu, Shuyu, Wang, Liwei, Wen, Andrew, Sameer, Murali, Liu, Hongfang

    Veröffentlicht: United States 16.12.2024
    Veröffentlicht in medRxiv : the preprint server for health sciences (16.12.2024)
    “… ) vary significantly, highlighting the need for developing approaches to obesity deep phenotyping and associated precision medicine …”
    Weitere Angaben
    Journal Article
  10. 10

    Bumblebee Your Way to Recovery: Transforming The Approach to Detection of Mental Health Relapses von Gorzynski, Kamil, Ples, Anna, Ryzhankow, Ivan, Zych, Bartlomiej

    Veröffentlicht: IEEE 14.04.2024
    “… : Psychotic and Non-Psychotic Relapse Detection using Wearable-Based Digital Phenotyping [1], First Track - detection of non-psychotic relapses, containing mainly depression episodes …”
    Volltext
    Tagungsbericht