Suchergebnisse - Attention based Convolution Autoencoder

Andere Suchmöglichkeiten:

  1. 1

    A hybrid deep learning-based fruit classification using attention model and convolution autoencoder von Xue, Gang, Liu, Shifeng, Ma, Yicao

    ISSN: 2199-4536, 2198-6053
    Veröffentlicht: Cham Springer International Publishing 01.06.2023
    Veröffentlicht in Complex & intelligent systems (01.06.2023)
    “… chain, factories, supermarkets, and other fields. In this paper, we develop a hybrid deep learning-based fruit image classification framework, named attention-based densely connected convolutional networks with convolution autoencoder (CAE-ADN …”
    Volltext
    Journal Article
  2. 2

    Multi-Channel Multi-Scale Convolution Attention Variational Autoencoder (MCA-VAE): An Interpretable Anomaly Detection Algorithm Based on Variational Autoencoder von Liu, Jingwen, Huang, Yuchen, Wu, Dizhi, Yang, Yuchen, Chen, Yanru, Chen, Liangyin, Zhang, Yuanyuan

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 16.08.2024
    Veröffentlicht in Sensors (Basel, Switzerland) (16.08.2024)
    “… ; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE …”
    Volltext
    Journal Article
  3. 3

    Attention Based Convolution Autoencoder for Dimensionality Reduction in Hyperspectral Images von Pande, Shivam, Banerjee, Biplab

    ISSN: 2153-7003
    Veröffentlicht: IEEE 11.07.2021
    “… To resolve these issues, deep learning techniques, such as convolution neural networks (CNNs) based autoencoders, are used …”
    Volltext
    Tagungsbericht
  4. 4

    GCN-Based LSTM Autoencoder with Self-Attention for Bearing Fault Diagnosis von Lee, Daehee, Choo, Hyunseung, Jeong, Jongpil

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 01.08.2024
    Veröffentlicht in Sensors (Basel, Switzerland) (01.08.2024)
    “… The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency …”
    Volltext
    Journal Article
  5. 5

    Convolutional Transformer-Inspired Autoencoder for Hyperspectral Anomaly Detection von He, Zhi, He, Dan, Xiao, Man, Lou, Anjun, Lai, Guanglin

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 2023
    Veröffentlicht in IEEE geoscience and remote sensing letters (2023)
    “… In this letter, a convolutional transformer-inspired autoencoder (CTA) is proposed for HAD. The CTA consists of a clustering-based module and an autoencoder-based module …”
    Volltext
    Journal Article
  6. 6

    Robust Spatial-Temporal Autoencoder for Unsupervised Anomaly Detection of Unmanned Aerial Vehicle With Flight Data von Jiang, Guoqian, Nan, Pengcheng, Zhang, Jingchao, Li, Yingwei, Li, Xiaoli

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2024
    “… Specifically, we designed a new robust spatial-temporal autoencoder (RSTAE) model based on the temporal convolution network (TCN …”
    Volltext
    Journal Article
  7. 7

    Deep Self-Supervised Graph Attention Convolution Autoencoder for Networks Clustering von Chen, Chao, Lu, Hu, Hong, Haotian, Wang, Hai, Wan, Shaohua

    ISSN: 0098-3063, 1558-4127
    Veröffentlicht: New York IEEE 01.11.2023
    Veröffentlicht in IEEE transactions on consumer electronics (01.11.2023)
    “… To solve this problem, we propose a Deep Self-Supervised Attention Convolution Autoencoder Graph Clustering (DSAGC …”
    Volltext
    Journal Article
  8. 8

    Compact Image Transformer Based on Convolutional Variational Autoencoder with Augmented Attention Backbone for Target Recognition in Infrared Images von Nebili, Billel, Khellal, Atmane, Nemra, Abdelkrim, Boulahia, Said Yacine, Mascarilla, Laurent

    ISSN: 2193-567X, 1319-8025, 2191-4281
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
    Veröffentlicht in Arabian journal for science and engineering (2011) (01.03.2024)
    “… In this direction, we proposed a Compact image Transformer based on convolutional variational Autoencoder with Augmented attention backbone (referred to AA-CiT …”
    Volltext
    Journal Article
  9. 9

    Attention-Based Convolutional Denoising Autoencoder for Two-Lead ECG Denoising and Arrhythmia Classification von Singh, Prateek, Sharma, Ambalika

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2022
    “… To achieve this, a novel attention-based convolutional denoising autoencoder (ACDAE) model is proposed that utilizes a skip-layer and attention module for reliable reconstruction of ECG signals from extreme noise conditions …”
    Volltext
    Journal Article
  10. 10

    ADAMAEX—Alzheimer’s disease classification via attention-enhanced autoencoders and XAI von Bootun, Doorgeshwaree, Auzine, Muhammad Muzzammil, Ayesha, Noor, Idris, Salma, Saba, Tanzila, Heenaye-Mamode Khan, Maleika

    ISSN: 1110-8665
    Veröffentlicht: Elsevier B.V 01.06.2025
    Veröffentlicht in Egyptian informatics journal (01.06.2025)
    “… on a convolutional autoencoder with four convolutions in the encoder part and a Squeeze and Excitation block for channel attention applied …”
    Volltext
    Journal Article
  11. 11

    Anomaly detection for real-world electric vehicle charging data using a convolutional autoencoder with multiscale convolution, attention mechanism, and BiLSTM von Liu, Zhibin, Li, Lei, Ding, Xiaoyin, Wang, Xia, Liu, Zhiheng, Wang, Yawen, Hu, Changpeng

    ISSN: 0360-5442
    Veröffentlicht: Elsevier Ltd 15.11.2025
    Veröffentlicht in Energy (Oxford) (15.11.2025)
    “… To improve the detection of anomalies in complex EV charging data, this study proposes a method based on an enhanced convolutional autoencoder (CoAE), MA-BiLSTM-MCoAE …”
    Volltext
    Journal Article
  12. 12

    Multi-Localized Sensitive Autoencoder-Attention-LSTM For Skeleton-based Action Recognition von Ng, Wing, Zhang, Mingyang, Wang, Ting

    ISSN: 1520-9210, 1941-0077
    Veröffentlicht: Piscataway IEEE 01.01.2022
    Veröffentlicht in IEEE transactions on multimedia (01.01.2022)
    “… In this work, we propose the Multi-Localized Sensitive Autoencoder-Attention-LSTM (Multi-LiSAAL) for SAR. The Localized Stochastic Sensitive Autoencoder …”
    Volltext
    Journal Article
  13. 13

    Graph attention autoencoder inspired CNN based brain tumor classification using MRI von Mishra, Lalita, Verma, Shekhar

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 07.09.2022
    Veröffentlicht in Neurocomputing (Amsterdam) (07.09.2022)
    “… •We propose GATE-CNN architecture for binary classification of brain tumor using MR (Magnetic Resonance) images.•We have implemented our model on three …”
    Volltext
    Journal Article
  14. 14

    Refined Multi-Focus image fusion using Multi-Scale neural network with SpSwin Autoencoder-based matting von Jiang, Shengchuan, Yu, Shanchuan

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 01.06.2025
    Veröffentlicht in Expert systems with applications (01.06.2025)
    “… ) Autoencoder-based matting for the multi-focus image fusion (MFIF) task. The proposed strategy introduces several innovations to enhance image quality and address challenges like boundary precision and texture preservation …”
    Volltext
    Journal Article
  15. 15

    Modeling Task fMRI Data Via Deep Convolutional Autoencoder von Huang, Heng, Hu, Xintao, Zhao, Yu, Makkie, Milad, Dong, Qinglin, Zhao, Shijie, Guo, Lei, Liu, Tianming

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.07.2018
    Veröffentlicht in IEEE transactions on medical imaging (01.07.2018)
    “… Task-based functional magnetic resonance imaging (tfMRI) has been widely used to study functional brain networks under task performance …”
    Volltext
    Journal Article
  16. 16

    MAMA Net: Multi-Scale Attention Memory Autoencoder Network for Anomaly Detection von Chen, Yurong, Zhang, Hui, Wang, Yaonan, Yang, Yimin, Zhou, Xianen, Wu, Q. M. Jonathan

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.03.2021
    Veröffentlicht in IEEE transactions on medical imaging (01.03.2021)
    “… To deal with those imperfectness, and motivated by memory-based decision-making and visual attention mechanism as a filter to select environmental information in human vision perceptual system …”
    Volltext
    Journal Article
  17. 17

    Elimination of Random Mixed Noise in ECG Using Convolutional Denoising Autoencoder With Transformer Encoder von Chen, Meng, Li, Yongjian, Zhang, Liting, Liu, Lei, Han, Baokun, Shi, Wenzhuo, Wei, Shoushui

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.04.2024
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.04.2024)
    “… To suppress random mixed noise (RMN) in ECG with less distortion, we propose a Transformer-based Convolutional Denoising AutoEncoder model (TCDAE) in this study …”
    Volltext
    Journal Article
  18. 18

    A Dual Attention-Based Autoencoder Model for Fetal ECG Extraction From Abdominal Signals von Ghonchi, Hamidreza, Abolghasemi, Vahid

    ISSN: 1530-437X, 1558-1748
    Veröffentlicht: New York IEEE 01.12.2022
    Veröffentlicht in IEEE sensors journal (01.12.2022)
    “… To address this problem, we propose a novel convolutional autoencoder (AE) network architecture to learn and extract the FECG patterns …”
    Volltext
    Journal Article
  19. 19

    Attention-Empowered Residual Autoencoder for End-to-End Communication Systems von Lu, Min, Zhou, Bin, Bu, Zhiyong

    ISSN: 1089-7798, 1558-2558
    Veröffentlicht: New York IEEE 01.04.2023
    Veröffentlicht in IEEE communications letters (01.04.2023)
    “… Convolutional neural network (CNN)-based autoencoder can accept arbitrary lengths and is widely adopted …”
    Volltext
    Journal Article
  20. 20

    Background-Guided Deformable Convolutional Autoencoder for Hyperspectral Anomaly Detection von Wu, Zhaoyue, Paoletti, Mercedes E., Su, Hongjun, Tao, Xuanwen, Han, Lirong, Haut, Juan M., Plaza, Antonio

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2023
    “… Autoencoder (AE)-based hyperspectral anomaly detectors have received significant attention …”
    Volltext
    Journal Article