Suchergebnisse - Approximate sample error minimization algorithm

  1. 1

    Learning from non-irreducible Markov chains von Sandrić, Nikola, Šebek, Stjepan

    ISSN: 0022-247X, 1096-0813
    Veröffentlicht: Elsevier Inc 15.07.2023
    Veröffentlicht in Journal of mathematical analysis and applications (15.07.2023)
    “… Most of the existing literature on supervised machine learning problems focuses on the case when the training data set is drawn from an i.i.d. sample …”
    Volltext
    Journal Article
  2. 2

    Optimal Subsampling for Large Sample Logistic Regression von Wang, HaiYing, Zhu, Rong, Ma, Ping

    ISSN: 0162-1459, 1537-274X, 1537-274X
    Veröffentlicht: United States Taylor & Francis 03.04.2018
    Veröffentlicht in Journal of the American Statistical Association (03.04.2018)
    “… In this article, we propose fast subsampling algorithms to efficiently approximate the maximum likelihood estimate in logistic regression …”
    Volltext
    Journal Article
  3. 3

    Phase Transition of Total Variation Based on Approximate Message Passing Algorithm von Cheng, Xiang, Lei, Hong

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.08.2022
    Veröffentlicht in Electronics (Basel) (01.08.2022)
    “… In compressed sensing (CS), one seeks to down-sample some high-dimensional signals and recover them accurately by exploiting the sparsity of the signals …”
    Volltext
    Journal Article
  4. 4

    Rademacher learning rates for iterated random functions von Sandrić, Nikola

    ISSN: 0885-064X
    Veröffentlicht: Elsevier Inc 01.12.2025
    Veröffentlicht in Journal of Complexity (01.12.2025)
    “… Most supervised learning methods assume training data is drawn from an i.i.d. sample. However, real-world problems often exhibit temporal dependence and strong correlations between marginals of the data-generating process, rendering …”
    Volltext
    Journal Article
  5. 5

    A Canonical Form for Weighted Automata and Applications to Approximate Minimization von Balle, Borja, Panangaden, Prakash, Precup, Doina

    ISSN: 1043-6871
    Veröffentlicht: IEEE 01.07.2015
    “… We study the problem of constructing approximations to a weighted automaton. Weighted finite automata (WFA) are closely related to the theory of rational …”
    Volltext
    Tagungsbericht
  6. 6

    Learning from non-irreducible Markov chains von Sandrić, Nikola, Šebek, Stjepan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.01.2023
    Veröffentlicht in arXiv.org (20.01.2023)
    “… Mostof the existing literature on supervised machine learning problems focuses on the case when the training data set is drawn from an i.i.d. sample …”
    Volltext
    Paper
  7. 7

    A Randomized Algorithm for Nonconvex Minimization With Inexact Evaluations and Complexity Guarantees von Li, Shuyao, Wright, Stephen J.

    ISSN: 0022-3239, 1573-2878
    Veröffentlicht: New York Springer US 01.12.2025
    Veröffentlicht in Journal of optimization theory and applications (01.12.2025)
    “… We consider minimization of a smooth nonconvex function with inexact oracle access to gradient and Hessian …”
    Volltext
    Journal Article
  8. 8

    Efficient Data Placement and Replication for QoS-Aware Approximate Query Evaluation of Big Data Analytics von Xia, Qiufen, Xu, Zichuan, Liang, Weifa, Yu, Shui, Guo, Song, Zomaya, Albert Y.

    ISSN: 1045-9219, 1558-2183
    Veröffentlicht: New York IEEE 01.12.2019
    “… Instead, sometimes users may only be interested in timely approximate rather than exact query results …”
    Volltext
    Journal Article
  9. 9

    Minimization for conditional simulation: Relationship to optimal transport von Oliver, Dean S.

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Elsevier Inc 15.05.2014
    Veröffentlicht in Journal of computational physics (15.05.2014)
    “… In this paper, we consider the problem of generating independent samples from a conditional distribution when independent samples from the prior distribution are available …”
    Volltext
    Journal Article
  10. 10

    Approximation of frame based missing data recovery von Cai, Jian-Feng, Shen, Zuowei, Ye, Gui-Bo

    ISSN: 1063-5203, 1096-603X
    Veröffentlicht: Elsevier Inc 01.09.2011
    Veröffentlicht in Applied and computational harmonic analysis (01.09.2011)
    “… While many such algorithms have been developed recently, there are very few papers available on their error estimations …”
    Volltext
    Journal Article
  11. 11

    A deep neural network-based method for solving obstacle problems von Cheng, Xiaoliang, Shen, Xing, Wang, Xilu, Liang, Kewei

    ISSN: 1468-1218, 1878-5719
    Veröffentlicht: Elsevier Ltd 01.08.2023
    Veröffentlicht in Nonlinear analysis: real world applications (01.08.2023)
    “… The approximate error is bounded by the depth and width of the network, the statistical error is estimated by the number of samples, and the optimization error is reflected in the empirical loss term …”
    Volltext
    Journal Article
  12. 12

    On optimal selection of summary statistics for approximate Bayesian computation von Nunes, Matthew A, Balding, David J

    ISSN: 1544-6115, 1544-6115
    Veröffentlicht: Germany 01.01.2010
    “… We approach it from the point of view of seeking data summaries that minimize the average squared error of the posterior distribution for a parameter of interest under approximate Bayesian computation (ABC …”
    Weitere Angaben
    Journal Article
  13. 13

    Analysis of the Generalization Error: Empirical Risk Minimization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations von Berner, Julius, Grohs, Philipp, Jentzen, Arnulf

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.11.2020
    Veröffentlicht in arXiv.org (11.11.2020)
    “… The development of new classification and regression algorithms based on empirical risk minimization (ERM …”
    Volltext
    Paper
  14. 14

    Near-optimality of greedy set selection in the sampling of graph signals von Chamon, Luiz F. O., Ribeiro, Alejandro

    Veröffentlicht: IEEE 01.12.2016
    “… Still, sampling set selection remains an open issue. Indeed, although conditions for graph signal reconstruction from noiseless samples were derived, the presence of noise makes sampling set selection combinatorial and NP-hard in general …”
    Volltext
    Tagungsbericht
  15. 15

    Machine learning based energy-free structure predictions of molecules, transition states, and solids von Lemm, Dominik, von Rudorff, Guido Falk, von Lilienfeld, O. Anatole

    ISSN: 2041-1723, 2041-1723
    Veröffentlicht: London Nature Publishing Group UK 22.07.2021
    Veröffentlicht in Nature communications (22.07.2021)
    “… Conventionally, force-fields or ab initio methods determine structure through energy minimization, which is either approximate or computationally demanding …”
    Volltext
    Journal Article
  16. 16

    Statistical learning problem of artificial neural network to control roofing process von Lapidus, Azariy, Makarov, Aleksandr

    ISSN: 2261-236X, 2274-7214, 2261-236X
    Veröffentlicht: Les Ulis EDP Sciences 01.01.2017
    Veröffentlicht in MATEC web of conferences (01.01.2017)
    “… ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy …”
    Volltext
    Journal Article Tagungsbericht
  17. 17

    Algorithm for sparse representation minimizing mean square error of power spectrograms von Tanaka, Yuma, Ogawa, Takahiro, Haseyama, Miki

    ISSN: 1546-1874, 2165-3577
    Veröffentlicht: IEEE 01.07.2015
    “… Sparse representation is an idea to approximate a target signal by a linear combination of a small number of sample signals, and it is utilized in various research fields …”
    Volltext
    Tagungsbericht Journal Article
  18. 18

    Efficient and accurate approximate Bayesian inference with an application to insurance data von Streftaris, George, Worton, Bruce J.

    ISSN: 0167-9473, 1872-7352
    Veröffentlicht: Amsterdam Elsevier B.V 20.01.2008
    Veröffentlicht in Computational statistics & data analysis (20.01.2008)
    “… An approximate Gibbs sampling method and an exact independence-type Metropolis–Hastings algorithm are derived, based on a log-normal/gamma mixture density that closely approximates the conditional distribution of the Poisson parameters …”
    Volltext
    Journal Article
  19. 19

    Group Distributionally Robust Dataset Distillation with Risk Minimization von Vahidian, Saeed, Wang, Mingyu, Gu, Jianyang, Kungurtsev, Vyacheslav, Jiang, Wei, Chen, Yiran

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.03.2024
    Veröffentlicht in arXiv.org (11.03.2024)
    “… However, targeting the training dataset must be thought of as auxiliary in the same sense that the training set is an approximate substitute for the population distribution, and the latter is the data …”
    Volltext
    Paper
  20. 20

    An optimal control framework for adaptive neural ODEs von Aghili, Joubine, Mula, Olga

    ISSN: 1019-7168, 1572-9044
    Veröffentlicht: New York Springer US 01.06.2024
    Veröffentlicht in Advances in computational mathematics (01.06.2024)
    “… The learning task consists in finding the ODE parameters as the optimal values of a sampled loss minimization problem …”
    Volltext
    Journal Article