Suchergebnisse - Approximate sample error minimization algorithm
-
1
Learning from non-irreducible Markov chains
ISSN: 0022-247X, 1096-0813Veröffentlicht: Elsevier Inc 15.07.2023Veröffentlicht in Journal of mathematical analysis and applications (15.07.2023)“… Most of the existing literature on supervised machine learning problems focuses on the case when the training data set is drawn from an i.i.d. sample …”
Volltext
Journal Article -
2
Optimal Subsampling for Large Sample Logistic Regression
ISSN: 0162-1459, 1537-274X, 1537-274XVeröffentlicht: United States Taylor & Francis 03.04.2018Veröffentlicht in Journal of the American Statistical Association (03.04.2018)“… In this article, we propose fast subsampling algorithms to efficiently approximate the maximum likelihood estimate in logistic regression …”
Volltext
Journal Article -
3
Phase Transition of Total Variation Based on Approximate Message Passing Algorithm
ISSN: 2079-9292, 2079-9292Veröffentlicht: Basel MDPI AG 01.08.2022Veröffentlicht in Electronics (Basel) (01.08.2022)“… In compressed sensing (CS), one seeks to down-sample some high-dimensional signals and recover them accurately by exploiting the sparsity of the signals …”
Volltext
Journal Article -
4
Rademacher learning rates for iterated random functions
ISSN: 0885-064XVeröffentlicht: Elsevier Inc 01.12.2025Veröffentlicht in Journal of Complexity (01.12.2025)“… Most supervised learning methods assume training data is drawn from an i.i.d. sample. However, real-world problems often exhibit temporal dependence and strong correlations between marginals of the data-generating process, rendering …”
Volltext
Journal Article -
5
A Canonical Form for Weighted Automata and Applications to Approximate Minimization
ISSN: 1043-6871Veröffentlicht: IEEE 01.07.2015Veröffentlicht in 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (01.07.2015)“… We study the problem of constructing approximations to a weighted automaton. Weighted finite automata (WFA) are closely related to the theory of rational …”
Volltext
Tagungsbericht -
6
Learning from non-irreducible Markov chains
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.01.2023Veröffentlicht in arXiv.org (20.01.2023)“… Mostof the existing literature on supervised machine learning problems focuses on the case when the training data set is drawn from an i.i.d. sample …”
Volltext
Paper -
7
A Randomized Algorithm for Nonconvex Minimization With Inexact Evaluations and Complexity Guarantees
ISSN: 0022-3239, 1573-2878Veröffentlicht: New York Springer US 01.12.2025Veröffentlicht in Journal of optimization theory and applications (01.12.2025)“… We consider minimization of a smooth nonconvex function with inexact oracle access to gradient and Hessian …”
Volltext
Journal Article -
8
Efficient Data Placement and Replication for QoS-Aware Approximate Query Evaluation of Big Data Analytics
ISSN: 1045-9219, 1558-2183Veröffentlicht: New York IEEE 01.12.2019Veröffentlicht in IEEE transactions on parallel and distributed systems (01.12.2019)“… Instead, sometimes users may only be interested in timely approximate rather than exact query results …”
Volltext
Journal Article -
9
Minimization for conditional simulation: Relationship to optimal transport
ISSN: 0021-9991, 1090-2716Veröffentlicht: Elsevier Inc 15.05.2014Veröffentlicht in Journal of computational physics (15.05.2014)“… In this paper, we consider the problem of generating independent samples from a conditional distribution when independent samples from the prior distribution are available …”
Volltext
Journal Article -
10
Approximation of frame based missing data recovery
ISSN: 1063-5203, 1096-603XVeröffentlicht: Elsevier Inc 01.09.2011Veröffentlicht in Applied and computational harmonic analysis (01.09.2011)“… While many such algorithms have been developed recently, there are very few papers available on their error estimations …”
Volltext
Journal Article -
11
A deep neural network-based method for solving obstacle problems
ISSN: 1468-1218, 1878-5719Veröffentlicht: Elsevier Ltd 01.08.2023Veröffentlicht in Nonlinear analysis: real world applications (01.08.2023)“… The approximate error is bounded by the depth and width of the network, the statistical error is estimated by the number of samples, and the optimization error is reflected in the empirical loss term …”
Volltext
Journal Article -
12
On optimal selection of summary statistics for approximate Bayesian computation
ISSN: 1544-6115, 1544-6115Veröffentlicht: Germany 01.01.2010Veröffentlicht in Statistical applications in genetics and molecular biology (01.01.2010)“… We approach it from the point of view of seeking data summaries that minimize the average squared error of the posterior distribution for a parameter of interest under approximate Bayesian computation (ABC …”
Weitere Angaben
Journal Article -
13
Analysis of the Generalization Error: Empirical Risk Minimization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.11.2020Veröffentlicht in arXiv.org (11.11.2020)“… The development of new classification and regression algorithms based on empirical risk minimization (ERM …”
Volltext
Paper -
14
Near-optimality of greedy set selection in the sampling of graph signals
Veröffentlicht: IEEE 01.12.2016Veröffentlicht in 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (01.12.2016)“… Still, sampling set selection remains an open issue. Indeed, although conditions for graph signal reconstruction from noiseless samples were derived, the presence of noise makes sampling set selection combinatorial and NP-hard in general …”
Volltext
Tagungsbericht -
15
Machine learning based energy-free structure predictions of molecules, transition states, and solids
ISSN: 2041-1723, 2041-1723Veröffentlicht: London Nature Publishing Group UK 22.07.2021Veröffentlicht in Nature communications (22.07.2021)“… Conventionally, force-fields or ab initio methods determine structure through energy minimization, which is either approximate or computationally demanding …”
Volltext
Journal Article -
16
Statistical learning problem of artificial neural network to control roofing process
ISSN: 2261-236X, 2274-7214, 2261-236XVeröffentlicht: Les Ulis EDP Sciences 01.01.2017Veröffentlicht in MATEC web of conferences (01.01.2017)“… ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy …”
Volltext
Journal Article Tagungsbericht -
17
Algorithm for sparse representation minimizing mean square error of power spectrograms
ISSN: 1546-1874, 2165-3577Veröffentlicht: IEEE 01.07.2015Veröffentlicht in International Conference on Digital Signal Processing proceedings (01.07.2015)“… Sparse representation is an idea to approximate a target signal by a linear combination of a small number of sample signals, and it is utilized in various research fields …”
Volltext
Tagungsbericht Journal Article -
18
Efficient and accurate approximate Bayesian inference with an application to insurance data
ISSN: 0167-9473, 1872-7352Veröffentlicht: Amsterdam Elsevier B.V 20.01.2008Veröffentlicht in Computational statistics & data analysis (20.01.2008)“… An approximate Gibbs sampling method and an exact independence-type Metropolis–Hastings algorithm are derived, based on a log-normal/gamma mixture density that closely approximates the conditional distribution of the Poisson parameters …”
Volltext
Journal Article -
19
Group Distributionally Robust Dataset Distillation with Risk Minimization
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.03.2024Veröffentlicht in arXiv.org (11.03.2024)“… However, targeting the training dataset must be thought of as auxiliary in the same sense that the training set is an approximate substitute for the population distribution, and the latter is the data …”
Volltext
Paper -
20
An optimal control framework for adaptive neural ODEs
ISSN: 1019-7168, 1572-9044Veröffentlicht: New York Springer US 01.06.2024Veröffentlicht in Advances in computational mathematics (01.06.2024)“… The learning task consists in finding the ODE parameters as the optimal values of a sampled loss minimization problem …”
Volltext
Journal Article