Suchergebnisse - Adaptive spatial–temporal graph convolutional network

Andere Suchmöglichkeiten:

  1. 1

    ST_AGCNT: Traffic Speed Forecasting Based on SpatialTemporal Adaptive Graph Convolutional Network with Transformer von Cheng, Rongjun, Liu, Mengxia, Xu, Yuanzi

    ISSN: 2071-1050, 2071-1050
    Veröffentlicht: Basel MDPI AG 01.03.2025
    Veröffentlicht in Sustainability (01.03.2025)
    “… In order to overcome these challenges, a SpatialTemporal Adaptive Graph Convolutional Network with Transformer (ST_AGCNT …”
    Volltext
    Journal Article
  2. 2

    AdpSTGCN: Adaptive spatialtemporal graph convolutional network for traffic forecasting von zhang, Xudong, Chen, Xuewen, Tang, Haina, Wu, Yulei, Shen, Hanji, Li, Jun

    ISSN: 0950-7051
    Veröffentlicht: Elsevier B.V 09.10.2024
    Veröffentlicht in Knowledge-based systems (09.10.2024)
    “… To address this challenge, we propose an adaptive spatialtemporal graph convolutional network for traffic forecasting …”
    Volltext
    Journal Article
  3. 3

    An attention-based adaptive spatialtemporal graph convolutional network for long-video ergonomic risk assessment von Zhou, Chengju, Zeng, Jiayu, Qiu, Lina, Wang, Shuxi, Liu, Pingzhi, Pan, Jiahui

    ISSN: 0952-1976, 1873-6769
    Veröffentlicht: Elsevier Ltd 01.05.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.05.2024)
    “… ). Among the automatic approaches, algorithms based on graph convolutional networks (GCNs) have shown promising results in ERA using skeleton sequence as input …”
    Volltext
    Journal Article
  4. 4

    Traffic Police 3D Gesture Recognition Based on Spatial-Temporal Fully Adaptive Graph Convolutional Network von Fu, Zheng, Chen, Junjie, Jiang, Kun, Wang, Sijia, Wen, Junze, Yang, Mengmeng, Yang, Diange

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: New York IEEE 01.09.2023
    “… Meanwhile, a fully adaptive spatial-temporal graph convolution network (FA-STGCN) is proposed to recognize the actions with different amplitude and frequencies …”
    Volltext
    Journal Article
  5. 5

    Attention-based spatialtemporal adaptive dual-graph convolutional network for traffic flow forecasting von Xia, Dawen, Shen, Bingqi, Geng, Jian, Hu, Yang, Li, Yantao, Li, Huaqing

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.08.2023
    Veröffentlicht in Neural computing & applications (01.08.2023)
    “… –temporal adaptive dual-graph convolutional network (ASTA-DGCN) for TFF in this paper. Specifically, we employ a spatial …”
    Volltext
    Journal Article
  6. 6

    A SpatialTemporal Adaptive Graph Convolutional Network with Multi-Sensor Signals for Tool Wear Prediction von Xia, Yu, Zheng, Guangji, Li, Ye, Liu, Hui

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.02.2025
    Veröffentlicht in Applied sciences (01.02.2025)
    “… To overcome these limitations, a novel spatialtemporal adaptive graph convolutional network (STAGCN …”
    Volltext
    Journal Article
  7. 7

    AFSTGCN: Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network von Xiao, Yuteng, Xia, Kaijian, Yin, Hongsheng, Zhang, Yu-Dong, Qian, Zhenjiang, Liu, Zhaoyang, Liang, Yuehan, Li, Xiaodan

    ISSN: 2352-8648, 2468-5925, 2352-8648
    Veröffentlicht: Elsevier B.V 01.04.2024
    Veröffentlicht in Digital communications and networks (01.04.2024)
    “… In this paper, we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network (AFSTGCN). First, to address the problem of the unknown spatial-temporal structure, we construct the Adaptive Fused Spatial-Temporal Graph …”
    Volltext
    Journal Article
  8. 8

    Multi‐stream adaptive spatialtemporal attention graph convolutional network for skeleton‐based action recognition von Yu, Lubin, Tian, Lianfang, Du, Qiliang, Bhutto, Jameel Ahmed

    ISSN: 1751-9632, 1751-9640
    Veröffentlicht: Stevenage John Wiley & Sons, Inc 01.03.2022
    Veröffentlicht in IET computer vision (01.03.2022)
    “… Graph convolutional networks (GCNs) generalize convolutional neural networks (CNNs) to non‐Euclidean graphs and achieve significant performance in skeleton …”
    Volltext
    Journal Article
  9. 9

    A novel adaptive spatialtemporal cross-graph convolutional fusion learning network for skeleton-based abnormal gait recognition von Wang, Liang, Wu, Xiaoyan, Wu, Bin, Wu, Jianning

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 15.08.2025
    Veröffentlicht in Engineering applications of artificial intelligence (15.08.2025)
    “… In this study, a novel adaptive spatialtemporal cross-graph convolutional fusion learning network is proposed to accurately recognize skeleton-based abnormal gait patterns …”
    Volltext
    Journal Article
  10. 10

    MAST-GCN: Multi-Scale Adaptive Spatial-Temporal Graph Convolutional Network for EEG-Based Depression Recognition von Lu, Haifeng, You, Zhiyang, Guo, Yi, Hu, Xiping

    ISSN: 1949-3045, 1949-3045
    Veröffentlicht: Piscataway IEEE 01.10.2024
    Veröffentlicht in IEEE transactions on affective computing (01.10.2024)
    “… In this paper, we propose Multi-scale Adaptive Spatial-Temporal Graph Convolutional Network (MAST-GCN) for mining latent topological structure among EEG channels and capturing discriminative spatio-temporal features …”
    Volltext
    Journal Article
  11. 11

    SAST-GCN: Segmentation Adaptive Spatial Temporal-Graph Convolutional Network for P3-Based Video Target Detection von Lu, Runnan, Zeng, Ying, Zhang, Rongkai, Yan, Bin, Tong, Li

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Veröffentlicht: Frontiers Media S.A 02.06.2022
    Veröffentlicht in Frontiers in neuroscience (02.06.2022)
    “… This paper proposes a segmentation adaptive spatial-temporal graph convolutional network (SAST-GCN) for P3-based video target detection …”
    Volltext
    Journal Article
  12. 12

    Spatial-temporal dual-channel adaptive graph convolutional network for remaining useful life prediction with multi-sensor information fusion von Zhang, Xingwu, Leng, Zhenjiang, Zhao, Zhibin, Li, Ming, Yu, Dan, Chen, Xuefeng

    ISSN: 1474-0346, 1873-5320
    Veröffentlicht: Elsevier Ltd 01.08.2023
    Veröffentlicht in Advanced engineering informatics (01.08.2023)
    “… To overcome these limitations, a novel graph neural network framework, namely, Spatialtemporal Dual-channel Adaptive Graph Convolutional Network (SDAGCN …”
    Volltext
    Journal Article
  13. 13

    STADGCN: spatialtemporal adaptive dynamic graph convolutional network for traffic flow prediction von Shi, Ying, Cui, Wentian, Wang, Ruiqin, Lou, Jungang, Shen, Qing

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.07.2025
    Veröffentlicht in Neural computing & applications (01.07.2025)
    “… In this paper, we propose a novel spatialtemporal adaptive dynamic graph convolutional network for traffic flow prediction …”
    Volltext
    Journal Article
  14. 14

    SSTGCNs: Spectral-Spatial-Temporal Long-Range Dependencies Joint Feature Extraction With Graph Convolutional Networks for Adaptive Change Detection von Chang, Zhanyuan, Wei, Yuwen, Lian, Jie, Jin, Mingxiao, Wang, Dong, Li, Xuyang

    ISSN: 1939-1404, 2151-1535
    Veröffentlicht: Piscataway IEEE 2025
    “… To solve the above problems, this article proposes spectral-spatial-temporal long-range dependencies joint feature extraction with graph convolutional networks …”
    Volltext
    Journal Article
  15. 15

    Enhancing aquaculture water quality forecasting using novel adaptive multi-channel spatial-temporal graph convolutional network von Xiang, Tianqi, Guo, Xiangyun, Chi, Junjie, Gao, Juan, Zhang, Luwei

    ISSN: 1934-6344, 1934-6352
    Veröffentlicht: Beijing International Journal of Agricultural and Biological Engineering (IJABE) 01.02.2025
    “… To address this challenge, a prediction model was proposed for water quality, namely an adaptive multi-channel temporal graph convolutional network (AMTGCN …”
    Volltext
    Journal Article
  16. 16

    Human Action Recognition Based on Spatial Temporal Adaptive Residual Graph Convolutional Networks with Attention Mechanism von Song, Lu, He, Yi, Yuan, Huaqing, Du, Peng

    ISSN: 1934-1768
    Veröffentlicht: Technical Committee on Control Theory, Chinese Association of Automation 28.07.2024
    Veröffentlicht in Chinese Control Conference (28.07.2024)
    “… This may not be suitable for the diversity of action categories. To address this, we propose a spatial-temporal adaptive residual graph convolutional network with an attention mechanism …”
    Volltext
    Tagungsbericht
  17. 17
  18. 18

    A coarse-to-fine adaptive spatialtemporal graph convolution network with residuals for motor imagery decoding from the same limb von Zhu, Lei, Yuan, Jie, Huang, Aiai, Zhang, Jianhai

    ISSN: 1746-8094, 1746-8108
    Veröffentlicht: Elsevier Ltd 01.04.2024
    Veröffentlicht in Biomedical signal processing and control (01.04.2024)
    “… –temporal graph convolutional network with residuals approach is proposed to extract spatial …”
    Volltext
    Journal Article
  19. 19

    Adaptive Spatial-Temporal Fusion Graph Convolutional Networks for Traffic Flow Forecasting von Li, Senwen, Ge, Liang, Lin, Yongquan, Zeng, Bo

    ISSN: 2161-4407
    Veröffentlicht: IEEE 18.07.2022
    “… It may not accurately reflect the spatial-temporal correlations among nodes. Secondly, only the correlations among nodes adjacent in time or space are considered in each graph convolutional layer …”
    Volltext
    Tagungsbericht
  20. 20

    SpatialTemporal Similarity Fusion Graph Adversarial Convolutional Networks for traffic flow forecasting von Wang, Bin, Long, Zhendan, Sheng, Jinfang, Zhong, Qiang

    ISSN: 0016-0032
    Veröffentlicht: Elsevier Inc 01.11.2024
    Veröffentlicht in Journal of the Franklin Institute (01.11.2024)
    “… This paper introduces a novel model, the SpatialTemporal Similarity Fusion Graphs Adversarial Convolutional Networks (STSF-GACN …”
    Volltext
    Journal Article