Suchergebnisse - 90C25 Mathematical Programming - convex programming

  1. 1

    On semidefinite programming relaxations for a class of robust SOS-convex polynomial optimization problems von Sun, Xiangkai, Huang, Jiayi, Teo, Kok Lay

    ISSN: 0925-5001, 1573-2916
    Veröffentlicht: New York Springer US 01.03.2024
    Veröffentlicht in Journal of global optimization (01.03.2024)
    “… In this paper, we deal with a new class of SOS-convex (sum of squares convex) polynomial optimization problems with spectrahedral uncertainty data in both the objective and constraints …”
    Volltext
    Journal Article
  2. 2

    Shapes and recession cones in mixed-integer convex representability von Zadik, Ilias, Lubin, Miles, Vielma, Juan Pablo

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
    Veröffentlicht in Mathematical programming (01.03.2024)
    “… Mixed-integer convex representable (MICP-R) sets are those sets that can be represented exactly through a mixed-integer convex programming formulation …”
    Volltext
    Journal Article
  3. 3

    Data-driven inverse optimization with imperfect information von Mohajerin Esfahani, Peyman, Shafieezadeh-Abadeh, Soroosh, Hanasusanto, Grani A., Kuhn, Daniel

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2018
    Veröffentlicht in Mathematical programming (01.01.2018)
    “… In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an …”
    Volltext
    Journal Article
  4. 4

    Convex hull results on quadratic programs with non-intersecting constraints von Joyce, Alexander, Yang, Boshi

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2024
    Veröffentlicht in Mathematical programming (01.05.2024)
    “… Let F ⊆ R n be a nonempty closed set. Understanding the structure of the closed convex hull C ¯ ( F ) : = conv ¯ { ( x , x x T ) | x ∈ F …”
    Volltext
    Journal Article
  5. 5

    A slightly lifted convex relaxation for nonconvex quadratic programming with ball constraints von Burer, Samuel

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Heidelberg Springer Nature B.V 01.05.2025
    Veröffentlicht in Mathematical programming (01.05.2025)
    “… However, there is no known explicit, tractable, exact convex representation for m≥3. In this paper, we construct a new, polynomially sized semidefinite relaxation for all m, which does not employ a disjunctive approach …”
    Volltext
    Journal Article
  6. 6

    A Benson-type algorithm for bounded convex vector optimization problems with vertex selection von Dörfler, Daniel, Löhne, Andreas, Schneider, Christopher, Weißing, Benjamin

    ISSN: 1055-6788, 1029-4937
    Veröffentlicht: Abingdon Taylor & Francis 04.05.2022
    Veröffentlicht in Optimization methods & software (04.05.2022)
    “… We present an algorithm for approximately solving bounded convex vector optimization problems …”
    Volltext
    Journal Article
  7. 7

    New analysis and results for the Frank–Wolfe method von Freund, Robert M., Grigas, Paul

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2016
    Veröffentlicht in Mathematical programming (01.01.2016)
    “… We present new results for the Frank–Wolfe method (also known as the conditional gradient method). We derive computational guarantees for arbitrary step-size …”
    Volltext
    Journal Article
  8. 8

    Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming von Necoara, I., Patrascu, A., Glineur, F.

    ISSN: 1055-6788, 1029-4937
    Veröffentlicht: Abingdon Taylor & Francis 04.03.2019
    Veröffentlicht in Optimization methods & software (04.03.2019)
    “… In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or …”
    Volltext
    Journal Article
  9. 9

    NP-hardness of deciding convexity of quartic polynomials and related problems von Ahmadi, Amir Ali, Olshevsky, Alex, Parrilo, Pablo A., Tsitsiklis, John N.

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer-Verlag 01.02.2013
    Veröffentlicht in Mathematical programming (01.02.2013)
    “… ) is globally convex. This solves a problem that has been open since 1992 when N. Z. Shor asked for the complexity of deciding convexity for quartic polynomials …”
    Volltext
    Journal Article
  10. 10

    Copositivity and constrained fractional quadratic problems von Amaral, Paula, Bomze, Immanuel M., Júdice, Joaquim

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2014
    Veröffentlicht in Mathematical programming (01.08.2014)
    “… ) and Standard Fractional Quadratic Problem (StFQP). Based on these formulations, Semidefinite Programming relaxations are derived for finding good lower bounds …”
    Volltext
    Journal Article
  11. 11

    Semiglobal exponential stability of the discrete-time Arrow-Hurwicz-Uzawa primal-dual algorithm for constrained optimization von Bin, Michelangelo, Notarnicola, Ivano, Parisini, Thomas

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
    Veröffentlicht in Mathematical programming (01.11.2024)
    “… We consider the discrete-time Arrow-Hurwicz-Uzawa primal-dual algorithm, also known as the first-order Lagrangian method, for constrained optimization problems involving a smooth strongly convex cost …”
    Volltext
    Journal Article
  12. 12

    A unified approach to error bounds for structured convex optimization problems von Zhou, Zirui, So, Anthony Man-Cho

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2017
    Veröffentlicht in Mathematical programming (01.10.2017)
    “… convex optimization problems, in which the objective function is the sum of a smooth convex function …”
    Volltext
    Journal Article
  13. 13

    Branch-and-bound performance estimation programming: a unified methodology for constructing optimal optimization methods von Das Gupta, Shuvomoy, Van Parys, Bart P. G., Ryu, Ernest K.

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
    Veröffentlicht in Mathematical programming (01.03.2024)
    “… We present the Branch-and-Bound Performance Estimation Programming (BnB-PEP), a unified methodology for constructing optimal first-order methods for convex and nonconvex optimization …”
    Volltext
    Journal Article
  14. 14

    Mathematical programming with Semilocally Subconvex functions over cones von Sharma, Vani, Chaudhary, Mamta, Grover, Meetu Bhatia

    ISSN: 2311-004X, 2310-5070
    Veröffentlicht: 02.09.2025
    Veröffentlicht in Statistics, optimization & information computing (02.09.2025)
    “… Then we investigate the optimalsolutions of the mathematical programming problem (MP) over cones using these functions, directional derivatives, andthe alternative theorem …”
    Volltext
    Journal Article
  15. 15

    Two Convergent Primal–Dual Hybrid Gradient Type Methods for Convex Programming with Linear Constraints von Sun, Min, Liu, Jing, Tian, Maoying

    ISSN: 1017-060X, 1735-8515
    Veröffentlicht: Singapore Springer Nature Singapore 01.06.2023
    Veröffentlicht in Bulletin of the Iranian Mathematical Society (01.06.2023)
    “… As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field …”
    Volltext
    Journal Article
  16. 16

    On the convex hull of convex quadratic optimization problems with indicators von Wei, Linchuan, Atamtürk, Alper, Gómez, Andrés, Küçükyavuz, Simge

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
    Veröffentlicht in Mathematical programming (01.03.2024)
    “… We consider the convex quadratic optimization problem in R n with indicator variables and arbitrary constraints on the indicators …”
    Volltext
    Journal Article
  17. 17

    Randomized Methods for Computing Optimal Transport Without Regularization and Their Convergence Analysis von Xie, Yue, Wang, Zhongjian, Zhang, Zhiwen

    ISSN: 0885-7474, 1573-7691
    Veröffentlicht: New York Springer US 01.08.2024
    Veröffentlicht in Journal of scientific computing (01.08.2024)
    “… The optimal transport (OT) problem can be reduced to a linear programming (LP) problem through discretization …”
    Volltext
    Journal Article
  18. 18

    FISTA is an automatic geometrically optimized algorithm for strongly convex functions von Aujol, J.-F., Dossal, Ch, Rondepierre, A.

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
    Veröffentlicht in Mathematical programming (01.03.2024)
    “… In this work, we are interested in the famous FISTA algorithm. We show that FISTA is an automatic geometrically optimized algorithm for functions satisfying a …”
    Volltext
    Journal Article
  19. 19

    Convex optimization via inertial algorithms with vanishing Tikhonov regularization: fast convergence to the minimum norm solution von Attouch, Hedy, László, Szilárd Csaba

    ISSN: 1432-2994, 1432-5217
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
    “… In a Hilbertian framework, for the minimization of a general convex differentiable function f , we introduce new inertial dynamics and algorithms that generate trajectories and iterates that converge …”
    Volltext
    Journal Article
  20. 20

    Differential stability of convex optimization problems under weaker conditions von An, Duong Thi Viet, Köbis, Markus A., Tuyen, Nguyen Van

    ISSN: 0233-1934, 1029-4945
    Veröffentlicht: Philadelphia Taylor & Francis 01.02.2020
    Veröffentlicht in Optimization (01.02.2020)
    “… Differential stability properties of convex optimization problems in Hausdorff locally convex topological vector spaces are considered in this paper …”
    Volltext
    Journal Article