Suchergebnisse - • Software and its engineering → Software testing and debugging Reinforcement learning

  1. 1

    Adaptive REST API Testing with Reinforcement Learning von Kim, Myeongsoo, Sinha, Saurabh, Orso, Alessandro

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… To address these limitations, we present an adaptive REST API testing technique that incorporates reinforcement learning to prioritize …”
    Volltext
    Tagungsbericht
  2. 2

    Automatic Web Testing Using Curiosity-Driven Reinforcement Learning von Zheng, Yan, Liu, Yi, Xie, Xiaofei, Liu, Yepang, Ma, Lei, Hao, Jianye, Liu, Yang

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Veröffentlicht: IEEE 01.05.2021
    “… WebExplor adopts a curiosity-driven reinforcement learning to generate high-quality action sequences (test cases …”
    Volltext
    Tagungsbericht
  3. 3

    DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement Learning von Corradini, Davide, Montolli, Zeno, Pasqua, Michele, Ceccato, Mariano

    ISSN: 2643-1572
    Veröffentlicht: ACM 27.10.2024
    “… However, current black-box testing approaches rely heavily on the information available in the API's formal documentation, i.e …”
    Volltext
    Tagungsbericht
  4. 4

    Intelligent software debugging: A reinforcement learning approach for detecting the shortest crashing scenarios von Durmaz, Engin, Tümer, M. Borahan

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 15.07.2022
    Veröffentlicht in Expert systems with applications (15.07.2022)
    “… Thus, automatic software testing methods have become inevitable to catch more bugs. To locate and repair bugs with an emphasis on the crash scenarios, we present in this work a reinforcement learning (RL …”
    Volltext
    Journal Article
  5. 5

    DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems von Ma, Lei, Juefei-Xu, Felix, Zhang, Fuyuan, Sun, Jiyuan, Xue, Minhui, Li, Bo, Chen, Chunyang, Su, Ting, Li, Li, Liu, Yang, Zhao, Jianjun, Wang, Yadong

    ISSN: 2643-1572
    Veröffentlicht: ACM 01.09.2018
    “… Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data …”
    Volltext
    Tagungsbericht
  6. 6

    Accelerating Finite State Machine-Based Testing Using Reinforcement Learning von Turker, Uraz Cengiz, Hierons, Robert M., El-Fakih, Khaled, Mousavi, Mohammad Reza, Tyukin, Ivan Y.

    ISSN: 0098-5589, 1939-3520
    Veröffentlicht: New York IEEE 01.03.2024
    Veröffentlicht in IEEE transactions on software engineering (01.03.2024)
    “… This paper addresses this scalability problem by introducing a reinforcement learning framework …”
    Volltext
    Journal Article
  7. 7

    Can Cooperative Multi-Agent Reinforcement Learning Boost Automatic Web Testing? An Exploratory Study von Fan, Yujia, Wang, Sinan, Fei, Zebang, Qin, Yao, Li, Huaxuan, Liu, Yepang

    ISSN: 2643-1572
    Veröffentlicht: ACM 27.10.2024
    “… Reinforcement learning (RL)-based web GUI testing techniques have attracted significant attention in both academia and industry due to their ability to facilitate automatic and intelligent exploration of websites under test …”
    Volltext
    Tagungsbericht
  8. 8

    On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations von Hundal, Rajdeep Singh, Xiao, Yan, Cao, Xiaochun, Dong, Jin Song, Rigger, Manuel

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment …”
    Volltext
    Tagungsbericht
  9. 9

    A Test Oracle for Reinforcement Learning Software Based on Lyapunov Stability Control Theory von Zhang, Shiyu, Song, Haoyang, Wang, Qixin, Shen, Henghua, Pei, Yu

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… Reinforcement Learning (RL) has gained significant attention in recent years. As RL software becomes more complex and infiltrates critical application domains, ensuring its quality and correctness becomes increasingly important …”
    Volltext
    Tagungsbericht
  10. 10

    Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data von Tappler, Martin, Pferscher, Andrea, Aichernig, Bernhard K., Konighofer, Bettina

    ISSN: 1558-1225
    Veröffentlicht: ACM 14.04.2024
    “… Reinforcement learning from demonstrations (RLfD) is a promising approach to improve the exploration efficiency of reinforcement learning (RL …”
    Volltext
    Tagungsbericht
  11. 11

    Efficient state synchronisation in model-based testing through reinforcement learning von Turker, Uraz Cengiz, Hierons, Robert M., Mousavi, Mohammad Reza, Tyukin, Ivan Y.

    ISSN: 2643-1572
    Veröffentlicht: IEEE 01.11.2021
    “… Model-based testing is a structured method to test complex systems. Scaling up model-based testing to large systems requires improving the efficiency of various steps involved in testcase generation and more importantly, in test-execution …”
    Volltext
    Tagungsbericht
  12. 12

    Deeply Reinforcing Android GUI Testing with Deep Reinforcement Learning von Lan, Yuanhong, Lu, Yifei, Li, Zhong, Pan, Minxue, Yang, Wenhua, Zhang, Tian, Li, Xuandong

    ISSN: 1558-1225
    Veröffentlicht: ACM 14.04.2024
    “… While previous studies have demonstrated the superiority of Reinforcement Learning (RL) in Android GUI testing, its effectiveness remains limited, particularly in large, complex apps …”
    Volltext
    Tagungsbericht
  13. 13

    Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration von Bertolino, Antonia, Guerriero, Antonio, Miranda, Breno, Pietrantuono, Roberto, Russo, Stefano

    ISSN: 1558-1225
    Veröffentlicht: ACM 01.10.2020
    “… , reinforcement learning). Various ML algorithms can be applied in each strategy. In this paper we introduce ten of such algorithms for adoption in CI practices, and perform …”
    Volltext
    Tagungsbericht
  14. 14

    Reinforcement Learning-Based Fuzz Testing for the Gazebo Robotic Simulator von Ren, Zhilei, Li, Yitao, Li, Xiaochen, Qi, Guanxiao, Xuan, Jifeng, Jiang, He

    ISSN: 2994-970X, 2994-970X
    Veröffentlicht: New York, NY, USA ACM 22.06.2025
    Veröffentlicht in Proceedings of the ACM on software engineering (22.06.2025)
    “… mechanism to handle strict input requirements, and a reinforcement learning-based command generator selection …”
    Volltext
    Journal Article
  15. 15

    AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL von Stennett, Tyler, Kim, Myeongsoo, Sinha, Saurabh, Orso, Alessandro

    ISSN: 2574-1934
    Veröffentlicht: IEEE 27.04.2025
    “… ) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs) for effective REST API testing …”
    Volltext
    Tagungsbericht
  16. 16

    Location is Key: Leveraging LLM for Functional Bug Localization in Verilog Design von Yao, Bingkun, Wang, Ning, Zhou, Jie, Wang, Xi, Gao, Hong, Jiang, Zhe, Guan, Nan

    Veröffentlicht: IEEE 22.06.2025
    “… In Verilog code design, identifying and locating functional bugs is an important yet challenging task. Existing automatic bug localization methods have limited …”
    Volltext
    Tagungsbericht
  17. 17

    Automatic HMI Structure Exploration Via Curiosity-Based Reinforcement Learning von Cao, Yushi, Zheng, Yan, Lin, Shang-Wei, Liu, Yang, Teo, Yon Shin, Toh, Yuxuan, Adiga, Vinay Vishnumurthy

    ISSN: 2643-1572
    Veröffentlicht: IEEE 01.11.2021
    “… Discovering the underlying structure of HMI software efficiently and sufficiently for the purpose of testing without any prior knowledge on the software logic remains a difficult problem …”
    Volltext
    Tagungsbericht
  18. 18

    Formal Specification and Testing for Reinforcement Learning von Varshosaz, Mahsa, Ghaffari, Mohsen, Johnsen, Einar Broch, Wąsowski, Andrzej

    ISSN: 2475-1421, 2475-1421
    Veröffentlicht: New York, NY, USA ACM 30.08.2023
    Veröffentlicht in Proceedings of ACM on programming languages (30.08.2023)
    “… The development process for reinforcement learning applications is still exploratory rather than systematic …”
    Volltext
    Journal Article
  19. 19

    Reward Augmentation in Reinforcement Learning for Testing Distributed Systems von Borgarelli, Andrea, Enea, Constantin, Majumdar, Rupak, Nagendra, Srinidhi

    ISSN: 2475-1421, 2475-1421
    Veröffentlicht: New York, NY, USA ACM 08.10.2024
    Veröffentlicht in Proceedings of ACM on programming languages (08.10.2024)
    “… We describe a randomized testing approach for distributed protocol implementations based on reinforcement learning …”
    Volltext
    Journal Article
  20. 20

    A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs von Kim, Myeongsoo, Stennett, Tyler, Sinha, Saurabh, Orso, Alessandro

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… a dependency-embedded multi-agent approach for REST API testing that integrates multi-agent reinforcement learning (MARL …”
    Volltext
    Tagungsbericht