Suchergebnisse - • Software and its engineering → Software testing and debugging Reinforcement learning
-
1
Adaptive REST API Testing with Reinforcement Learning
ISSN: 2643-1572Veröffentlicht: IEEE 11.09.2023Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“… To address these limitations, we present an adaptive REST API testing technique that incorporates reinforcement learning to prioritize …”
Volltext
Tagungsbericht -
2
Automatic Web Testing Using Curiosity-Driven Reinforcement Learning
ISBN: 1665402962, 9781665402965ISSN: 1558-1225Veröffentlicht: IEEE 01.05.2021Veröffentlicht in Proceedings / International Conference on Software Engineering (01.05.2021)“… WebExplor adopts a curiosity-driven reinforcement learning to generate high-quality action sequences (test cases …”
Volltext
Tagungsbericht -
3
DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement Learning
ISSN: 2643-1572Veröffentlicht: ACM 27.10.2024Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“… However, current black-box testing approaches rely heavily on the information available in the API's formal documentation, i.e …”
Volltext
Tagungsbericht -
4
Intelligent software debugging: A reinforcement learning approach for detecting the shortest crashing scenarios
ISSN: 0957-4174, 1873-6793Veröffentlicht: New York Elsevier Ltd 15.07.2022Veröffentlicht in Expert systems with applications (15.07.2022)“… Thus, automatic software testing methods have become inevitable to catch more bugs. To locate and repair bugs with an emphasis on the crash scenarios, we present in this work a reinforcement learning (RL …”
Volltext
Journal Article -
5
DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems
ISSN: 2643-1572Veröffentlicht: ACM 01.09.2018Veröffentlicht in 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE) (01.09.2018)“… Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data …”
Volltext
Tagungsbericht -
6
Accelerating Finite State Machine-Based Testing Using Reinforcement Learning
ISSN: 0098-5589, 1939-3520Veröffentlicht: New York IEEE 01.03.2024Veröffentlicht in IEEE transactions on software engineering (01.03.2024)“… This paper addresses this scalability problem by introducing a reinforcement learning framework …”
Volltext
Journal Article -
7
Can Cooperative Multi-Agent Reinforcement Learning Boost Automatic Web Testing? An Exploratory Study
ISSN: 2643-1572Veröffentlicht: ACM 27.10.2024Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“… Reinforcement learning (RL)-based web GUI testing techniques have attracted significant attention in both academia and industry due to their ability to facilitate automatic and intelligent exploration of websites under test …”
Volltext
Tagungsbericht -
8
On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment …”
Volltext
Tagungsbericht -
9
A Test Oracle for Reinforcement Learning Software Based on Lyapunov Stability Control Theory
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Reinforcement Learning (RL) has gained significant attention in recent years. As RL software becomes more complex and infiltrates critical application domains, ensuring its quality and correctness becomes increasingly important …”
Volltext
Tagungsbericht -
10
Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data
ISSN: 1558-1225Veröffentlicht: ACM 14.04.2024Veröffentlicht in Proceedings / International Conference on Software Engineering (14.04.2024)“… Reinforcement learning from demonstrations (RLfD) is a promising approach to improve the exploration efficiency of reinforcement learning (RL …”
Volltext
Tagungsbericht -
11
Efficient state synchronisation in model-based testing through reinforcement learning
ISSN: 2643-1572Veröffentlicht: IEEE 01.11.2021Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (01.11.2021)“… Model-based testing is a structured method to test complex systems. Scaling up model-based testing to large systems requires improving the efficiency of various steps involved in testcase generation and more importantly, in test-execution …”
Volltext
Tagungsbericht -
12
Deeply Reinforcing Android GUI Testing with Deep Reinforcement Learning
ISSN: 1558-1225Veröffentlicht: ACM 14.04.2024Veröffentlicht in Proceedings / International Conference on Software Engineering (14.04.2024)“… While previous studies have demonstrated the superiority of Reinforcement Learning (RL) in Android GUI testing, its effectiveness remains limited, particularly in large, complex apps …”
Volltext
Tagungsbericht -
13
Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration
ISSN: 1558-1225Veröffentlicht: ACM 01.10.2020Veröffentlicht in 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) (01.10.2020)“… , reinforcement learning). Various ML algorithms can be applied in each strategy. In this paper we introduce ten of such algorithms for adoption in CI practices, and perform …”
Volltext
Tagungsbericht -
14
Reinforcement Learning-Based Fuzz Testing for the Gazebo Robotic Simulator
ISSN: 2994-970X, 2994-970XVeröffentlicht: New York, NY, USA ACM 22.06.2025Veröffentlicht in Proceedings of the ACM on software engineering (22.06.2025)“… mechanism to handle strict input requirements, and a reinforcement learning-based command generator selection …”
Volltext
Journal Article -
15
AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL
ISSN: 2574-1934Veröffentlicht: IEEE 27.04.2025Veröffentlicht in Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) (27.04.2025)“… ) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs) for effective REST API testing …”
Volltext
Tagungsbericht -
16
Location is Key: Leveraging LLM for Functional Bug Localization in Verilog Design
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… In Verilog code design, identifying and locating functional bugs is an important yet challenging task. Existing automatic bug localization methods have limited …”
Volltext
Tagungsbericht -
17
Automatic HMI Structure Exploration Via Curiosity-Based Reinforcement Learning
ISSN: 2643-1572Veröffentlicht: IEEE 01.11.2021Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (01.11.2021)“… Discovering the underlying structure of HMI software efficiently and sufficiently for the purpose of testing without any prior knowledge on the software logic remains a difficult problem …”
Volltext
Tagungsbericht -
18
Formal Specification and Testing for Reinforcement Learning
ISSN: 2475-1421, 2475-1421Veröffentlicht: New York, NY, USA ACM 30.08.2023Veröffentlicht in Proceedings of ACM on programming languages (30.08.2023)“… The development process for reinforcement learning applications is still exploratory rather than systematic …”
Volltext
Journal Article -
19
Reward Augmentation in Reinforcement Learning for Testing Distributed Systems
ISSN: 2475-1421, 2475-1421Veröffentlicht: New York, NY, USA ACM 08.10.2024Veröffentlicht in Proceedings of ACM on programming languages (08.10.2024)“… We describe a randomized testing approach for distributed protocol implementations based on reinforcement learning …”
Volltext
Journal Article -
20
A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… a dependency-embedded multi-agent approach for REST API testing that integrates multi-agent reinforcement learning (MARL …”
Volltext
Tagungsbericht

