Suchergebnisse - (dynamical OR dynamik) system autoencoder*

  1. 1

    A novel process monitoring approach based on variational recurrent autoencoder von Cheng, Feifan, He, Q. Peter, Zhao, Jinsong

    ISSN: 0098-1354, 1873-4375
    Veröffentlicht: Elsevier Ltd 04.10.2019
    Veröffentlicht in Computers & chemical engineering (04.10.2019)
    “… Modern manufacturing plants demand not only more intelligent but also safer and more reliable process monitoring systems …”
    Volltext
    Journal Article
  2. 2

    A novel process monitoring approach based on Feature Points Distance Dynamic Autoencoder von Cheng, Feifan, Zhao, Jinsong

    ISBN: 9780128186343, 0128186348
    ISSN: 1570-7946
    Veröffentlicht: 2019
    Veröffentlicht in Computer Aided Chemical Engineering (2019)
    “… And autoencoder can not be ensured to get various meaningful features from the raw data. In this work, we proposed Feature Points Distance Dynamic Autoencoder (FPDDAE …”
    Volltext
    Buchkapitel
  3. 3

    Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders von Lee, Kookjin, Carlberg, Kevin T.

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 01.03.2020
    Veröffentlicht in Journal of computational physics (01.03.2020)
    “… •Two model-reduction methods that project dynamical systems on nonlinear manifolds …”
    Volltext
    Journal Article
  4. 4

    Learning nonlinear projections for reduced-order modeling of dynamical systems using constrained autoencoders von Otto, Samuel E, Macchio, Gregory R, Rowley, Clarence W

    ISSN: 1089-7682, 1089-7682
    Veröffentlicht: 01.11.2023
    Veröffentlicht in Chaos (Woodbury, N.Y.) (01.11.2023)
    “… Recently developed reduced-order modeling techniques aim to approximate nonlinear dynamical systems on low-dimensional manifolds learned from data …”
    Weitere Angaben
    Journal Article
  5. 5

    Aligning Dynamic Social Networks: An Optimization Over Dynamic Graph Autoencoder von Sun, Li, Zhang, Zhongbao, Wang, Feiyang, Ji, Pengxin, Wen, Jian, Su, Sen, Yu, Philip S.

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York IEEE 01.06.2023
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.06.2023)
    “… Towards this end, we propose a novel Dynamic Graph autoencoder based dynamic social network Alignment approach, referred to as DGA , unfolding the fruitful dynamics of social networks for user alignment …”
    Volltext
    Journal Article
  6. 6

    Temporally-consistent koopman autoencoders for forecasting dynamical systems von Nayak, Indranil, Chakrabarti, Ananda, Kumar, Mrinal, Teixeira, Fernando L., Goswami, Debdipta

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 01.07.2025
    Veröffentlicht in Scientific reports (01.07.2025)
    “… Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems …”
    Volltext
    Journal Article
  7. 7

    Unsupervised Speech Enhancement Using Dynamical Variational Autoencoders von Bie, Xiaoyu, Leglaive, Simon, Alameda-Pineda, Xavier, Girin, Laurent

    ISSN: 2329-9290, 2329-9304
    Veröffentlicht: Piscataway IEEE 01.01.2022
    “… Dynamical variational autoencoders (DVAEs) are a class of deep generative models with latent variables, dedicated to model time series of high-dimensional data …”
    Volltext
    Journal Article
  8. 8

    A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder von Kim, Youngkyu, Choi, Youngsoo, Widemann, David, Zohdi, Tarek

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 15.02.2022
    Veröffentlicht in Journal of computational physics (15.02.2022)
    “… •A novel physics-informed neural network reduced order model is introduced.•It is based on nonlinear manifold solution representation.•A sparse shallow neural …”
    Volltext
    Journal Article
  9. 9

    Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics von Xu, Jiayang, Duraisamy, Karthik

    ISSN: 0045-7825, 1879-2138
    Veröffentlicht: Amsterdam Elsevier B.V 01.12.2020
    “… A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds …”
    Volltext
    Journal Article
  10. 10

    Learning the health index of complex systems using dynamic conditional variational autoencoders von Wei, Yupeng, Wu, Dazhong, Terpenny, Janis

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.12.2021
    Veröffentlicht in Reliability engineering & system safety (01.12.2021)
    “… Recent advances in sensing technologies have enabled engineers to collect big data to predict the remaining useful life (RUL) of complex systems …”
    Volltext
    Journal Article
  11. 11

    Dynamical polynomial-based self-organizing neural networks designed through autoencoder-driven feature selection and adaptive neuron pruning von Wang, Zhen, Oh, Sung-Kwun, Fu, Zunwei, Roh, Seok-Beom, Kim, Eun-Hu, Kim, Jin-Yul

    ISSN: 0020-0255
    Veröffentlicht: Elsevier Inc 01.03.2026
    Veröffentlicht in Information sciences (01.03.2026)
    “… In this study, we introduce a dynamical polynomial-based self-organizing neural network (DPSON …”
    Volltext
    Journal Article
  12. 12

    GD-VAEs: Geometric dynamic variational autoencoders for learning nonlinear dynamics and dimension reductions von Lopez, Ryan, Atzberger, Paul J.

    ISSN: 0021-9991
    Veröffentlicht: Elsevier Inc 15.09.2025
    Veröffentlicht in Journal of computational physics (15.09.2025)
    “… •Development of deep variational autoencoders utilizing prior knowledge from qualitative analysis of dynamical systems …”
    Volltext
    Journal Article
  13. 13

    Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders von Jiang, Ke, Jiang, Zhaohui, Xie, Yongfang, Pan, Dong, Gui, Weihua

    ISSN: 1551-3203, 1941-0050
    Veröffentlicht: Piscataway IEEE 01.03.2022
    Veröffentlicht in IEEE transactions on industrial informatics (01.03.2022)
    “… Thus, this article proposes a novel stacked dynamic target-driven denoising autoencoder for layer-by-layer hierarchical feature representation, and the dynamic relationship between samples …”
    Volltext
    Journal Article
  14. 14

    Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions von Conti, Paolo, Gobat, Giorgio, Fresca, Stefania, Manzoni, Andrea, Frangi, Attilio

    ISSN: 0045-7825, 1879-2138
    Veröffentlicht: Elsevier B.V 01.06.2023
    “… Starting from a limited amount of full order solutions, the proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics …”
    Volltext
    Journal Article
  15. 15

    Dynamical System Autoencoders von He, Shiquan, Paffenroth, Randy, Cava, Olivia, Dunham, Cate

    ISSN: 1946-0759
    Veröffentlicht: IEEE 18.12.2024
    “… In this paper, we introduce a new type of autoencoder that we call dynamical system autoencoder (DSAE …”
    Volltext
    Tagungsbericht
  16. 16

    Stability Analysis of Denoising Autoencoders Based on Dynamical Projection System von Park, Saerom, Lee, Jaewook

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York IEEE 01.08.2021
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.08.2021)
    “… In this study, we give a stability analysis of denoising autoencoder(DAE) from the novel perspective of dynamical systems when the input density is defined as a distribution on a manifold …”
    Volltext
    Journal Article
  17. 17

    Predicting turbulent dynamics with the convolutional autoencoder echo state network von Racca, Alberto, Doan, Nguyen Anh Khoa, Magri, Luca

    ISSN: 0022-1120, 1469-7645
    Veröffentlicht: Cambridge, UK Cambridge University Press 15.11.2023
    Veröffentlicht in Journal of fluid mechanics (15.11.2023)
    “… The dynamics of turbulent flows is chaotic and difficult to predict. This makes the design of accurate reduced-order models challenging …”
    Volltext
    Journal Article
  18. 18

    Weighted dynamic network link prediction based on graph autoencoder von Mei, Peng, Zhao, Yuhong, Wang, Jingyu, Liang, Yefei

    ISSN: 0020-0255
    Veröffentlicht: Elsevier Inc 01.12.2025
    Veröffentlicht in Information sciences (01.12.2025)
    “… With the development of deep learning, Graph Autoencoders (GAE) within unsupervised learning frameworks have been widely applied to representation learning in dynamic networks …”
    Volltext
    Journal Article
  19. 19

    Φ-DVAE: Physics-informed dynamical variational autoencoders for unstructured data assimilation von Glyn-Davies, Alex, Duffin, Connor, Deniz Akyildiz, O., Girolami, Mark

    ISSN: 0021-9991
    Veröffentlicht: Elsevier Inc 15.10.2024
    Veröffentlicht in Journal of computational physics (15.10.2024)
    “… To address these shortcomings, in this paper we develop a physics-informed dynamical variational autoencoder (Φ-DVAE …”
    Volltext
    Journal Article
  20. 20

    Stochastic embeddings of dynamical phenomena through variational autoencoders von García, Constantino A., Félix, Paulo, Presedo, Jesús M., Otero, Abraham

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 01.04.2022
    Veröffentlicht in Journal of computational physics (01.04.2022)
    “… System identification in scenarios where the observed number of variables is less than the degrees of freedom in the dynamics is an important challenge …”
    Volltext
    Journal Article