Suchergebnisse - (dynamical OR dynamik) system autoencoder*
-
1
A novel process monitoring approach based on variational recurrent autoencoder
ISSN: 0098-1354, 1873-4375Veröffentlicht: Elsevier Ltd 04.10.2019Veröffentlicht in Computers & chemical engineering (04.10.2019)“… Modern manufacturing plants demand not only more intelligent but also safer and more reliable process monitoring systems …”
Volltext
Journal Article -
2
A novel process monitoring approach based on Feature Points Distance Dynamic Autoencoder
ISBN: 9780128186343, 0128186348ISSN: 1570-7946Veröffentlicht: 2019Veröffentlicht in Computer Aided Chemical Engineering (2019)“… And autoencoder can not be ensured to get various meaningful features from the raw data. In this work, we proposed Feature Points Distance Dynamic Autoencoder (FPDDAE …”
Volltext
Buchkapitel -
3
Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
ISSN: 0021-9991, 1090-2716Veröffentlicht: Cambridge Elsevier Inc 01.03.2020Veröffentlicht in Journal of computational physics (01.03.2020)“… •Two model-reduction methods that project dynamical systems on nonlinear manifolds …”
Volltext
Journal Article -
4
Learning nonlinear projections for reduced-order modeling of dynamical systems using constrained autoencoders
ISSN: 1089-7682, 1089-7682Veröffentlicht: 01.11.2023Veröffentlicht in Chaos (Woodbury, N.Y.) (01.11.2023)“… Recently developed reduced-order modeling techniques aim to approximate nonlinear dynamical systems on low-dimensional manifolds learned from data …”
Weitere Angaben
Journal Article -
5
Aligning Dynamic Social Networks: An Optimization Over Dynamic Graph Autoencoder
ISSN: 1041-4347, 1558-2191Veröffentlicht: New York IEEE 01.06.2023Veröffentlicht in IEEE transactions on knowledge and data engineering (01.06.2023)“… Towards this end, we propose a novel Dynamic Graph autoencoder based dynamic social network Alignment approach, referred to as DGA , unfolding the fruitful dynamics of social networks for user alignment …”
Volltext
Journal Article -
6
Temporally-consistent koopman autoencoders for forecasting dynamical systems
ISSN: 2045-2322, 2045-2322Veröffentlicht: London Nature Publishing Group UK 01.07.2025Veröffentlicht in Scientific reports (01.07.2025)“… Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems …”
Volltext
Journal Article -
7
Unsupervised Speech Enhancement Using Dynamical Variational Autoencoders
ISSN: 2329-9290, 2329-9304Veröffentlicht: Piscataway IEEE 01.01.2022Veröffentlicht in IEEE/ACM transactions on audio, speech, and language processing (01.01.2022)“… Dynamical variational autoencoders (DVAEs) are a class of deep generative models with latent variables, dedicated to model time series of high-dimensional data …”
Volltext
Journal Article -
8
A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
ISSN: 0021-9991, 1090-2716Veröffentlicht: Cambridge Elsevier Inc 15.02.2022Veröffentlicht in Journal of computational physics (15.02.2022)“… •A novel physics-informed neural network reduced order model is introduced.•It is based on nonlinear manifold solution representation.•A sparse shallow neural …”
Volltext
Journal Article -
9
Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
ISSN: 0045-7825, 1879-2138Veröffentlicht: Amsterdam Elsevier B.V 01.12.2020Veröffentlicht in Computer methods in applied mechanics and engineering (01.12.2020)“… A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds …”
Volltext
Journal Article -
10
Learning the health index of complex systems using dynamic conditional variational autoencoders
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.12.2021Veröffentlicht in Reliability engineering & system safety (01.12.2021)“… Recent advances in sensing technologies have enabled engineers to collect big data to predict the remaining useful life (RUL) of complex systems …”
Volltext
Journal Article -
11
Dynamical polynomial-based self-organizing neural networks designed through autoencoder-driven feature selection and adaptive neuron pruning
ISSN: 0020-0255Veröffentlicht: Elsevier Inc 01.03.2026Veröffentlicht in Information sciences (01.03.2026)“… In this study, we introduce a dynamical polynomial-based self-organizing neural network (DPSON …”
Volltext
Journal Article -
12
GD-VAEs: Geometric dynamic variational autoencoders for learning nonlinear dynamics and dimension reductions
ISSN: 0021-9991Veröffentlicht: Elsevier Inc 15.09.2025Veröffentlicht in Journal of computational physics (15.09.2025)“… •Development of deep variational autoencoders utilizing prior knowledge from qualitative analysis of dynamical systems …”
Volltext
Journal Article -
13
Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders
ISSN: 1551-3203, 1941-0050Veröffentlicht: Piscataway IEEE 01.03.2022Veröffentlicht in IEEE transactions on industrial informatics (01.03.2022)“… Thus, this article proposes a novel stacked dynamic target-driven denoising autoencoder for layer-by-layer hierarchical feature representation, and the dynamic relationship between samples …”
Volltext
Journal Article -
14
Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions
ISSN: 0045-7825, 1879-2138Veröffentlicht: Elsevier B.V 01.06.2023Veröffentlicht in Computer methods in applied mechanics and engineering (01.06.2023)“… Starting from a limited amount of full order solutions, the proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics …”
Volltext
Journal Article -
15
Dynamical System Autoencoders
ISSN: 1946-0759Veröffentlicht: IEEE 18.12.2024Veröffentlicht in Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) (18.12.2024)“… In this paper, we introduce a new type of autoencoder that we call dynamical system autoencoder (DSAE …”
Volltext
Tagungsbericht -
16
Stability Analysis of Denoising Autoencoders Based on Dynamical Projection System
ISSN: 1041-4347, 1558-2191Veröffentlicht: New York IEEE 01.08.2021Veröffentlicht in IEEE transactions on knowledge and data engineering (01.08.2021)“… In this study, we give a stability analysis of denoising autoencoder(DAE) from the novel perspective of dynamical systems when the input density is defined as a distribution on a manifold …”
Volltext
Journal Article -
17
Predicting turbulent dynamics with the convolutional autoencoder echo state network
ISSN: 0022-1120, 1469-7645Veröffentlicht: Cambridge, UK Cambridge University Press 15.11.2023Veröffentlicht in Journal of fluid mechanics (15.11.2023)“… The dynamics of turbulent flows is chaotic and difficult to predict. This makes the design of accurate reduced-order models challenging …”
Volltext
Journal Article -
18
Weighted dynamic network link prediction based on graph autoencoder
ISSN: 0020-0255Veröffentlicht: Elsevier Inc 01.12.2025Veröffentlicht in Information sciences (01.12.2025)“… With the development of deep learning, Graph Autoencoders (GAE) within unsupervised learning frameworks have been widely applied to representation learning in dynamic networks …”
Volltext
Journal Article -
19
Φ-DVAE: Physics-informed dynamical variational autoencoders for unstructured data assimilation
ISSN: 0021-9991Veröffentlicht: Elsevier Inc 15.10.2024Veröffentlicht in Journal of computational physics (15.10.2024)“… To address these shortcomings, in this paper we develop a physics-informed dynamical variational autoencoder (Φ-DVAE …”
Volltext
Journal Article -
20
Stochastic embeddings of dynamical phenomena through variational autoencoders
ISSN: 0021-9991, 1090-2716Veröffentlicht: Cambridge Elsevier Inc 01.04.2022Veröffentlicht in Journal of computational physics (01.04.2022)“… System identification in scenarios where the observed number of variables is less than the degrees of freedom in the dynamics is an important challenge …”
Volltext
Journal Article

