Suchergebnisse - (conditional OR conditioning) variational autoencoder adaptive synthesis~

  • Treffer 1 - 6 von 6
Treffer weiter einschränken
  1. 1

    Inference-Reconstruction Variational Autoencoder for Light Field Image Reconstruction von Han, Kang, Xiang, Wei

    ISSN: 1057-7149, 1941-0042, 1941-0042
    Veröffentlicht: New York IEEE 2022
    Veröffentlicht in IEEE transactions on image processing (2022)
    “… In this paper, we propose an inference-reconstruction variational autoencoder (IR-VAE) to reconstruct a dense light field image out of four corner reference views in a light field image …”
    Volltext
    Journal Article
  2. 2

    Semi-Identical Twins Variational AutoEncoder for Few-Shot Learning von Zhang, Yi, Huang, Sheng, Peng, Xi, Yang, Dan

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.07.2024
    “… Inspired by some genetic characteristics of semi-identical twins, a novel multimodal generative FSL approach was developed named semi-identical twins variational autoencoder (STVAE …”
    Volltext
    Journal Article
  3. 3

    CaRoLS: Condition-adaptive multi-level road layout synthesis von Feng, Tian, Li, Long, Li, Weitao, Li, Bo, Shen, Junao

    ISSN: 0097-8493
    Veröffentlicht: Elsevier Ltd 01.12.2025
    Veröffentlicht in Computers & graphics (01.12.2025)
    “… We propose CaRoLS, a unified two-stage method for condition-adaptive multi-level road layout synthesis …”
    Volltext
    Journal Article
  4. 4

    Optimizing Diffusion Model Training Efficiency to Generate High-Resolution Images von Wang, Junhua, Jiang, Yuan

    Veröffentlicht: IEEE 06.06.2025
    “… , and constructs a fusion architecture of conditional input and latent representation. This paper uses Vector Quantized-Variational AutoEncoder (VQ-VAE …”
    Volltext
    Tagungsbericht
  5. 5

    Deep Probabilistic Modeling for Causal Inference and Decision Making von Wu, Yulun

    ISBN: 9798288861840
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2025
    “… Prior works using variational inference in counterfactual generative modeling have been focusing …”
    Volltext
    Dissertation
  6. 6

    DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations von Park, Dogyun, Kim, Sihyeon, Lee, Sojin, Kim, Hyunwoo J

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.03.2024
    Veröffentlicht in arXiv.org (20.03.2024)
    “… To address this limitation, we propose Domain-agnostic Latent Diffusion Model for INRs (DDMI) that generates adaptive positional embeddings instead of neural networks' weights …”
    Volltext
    Paper