Suchergebnisse - (conditional OR conditioning) variational autoencoder adaptive synthesis~
-
1
Inference-Reconstruction Variational Autoencoder for Light Field Image Reconstruction
ISSN: 1057-7149, 1941-0042, 1941-0042Veröffentlicht: New York IEEE 2022Veröffentlicht in IEEE transactions on image processing (2022)“… In this paper, we propose an inference-reconstruction variational autoencoder (IR-VAE) to reconstruct a dense light field image out of four corner reference views in a light field image …”
Volltext
Journal Article -
2
Semi-Identical Twins Variational AutoEncoder for Few-Shot Learning
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: United States IEEE 01.07.2024Veröffentlicht in IEEE transaction on neural networks and learning systems (01.07.2024)“… Inspired by some genetic characteristics of semi-identical twins, a novel multimodal generative FSL approach was developed named semi-identical twins variational autoencoder (STVAE …”
Volltext
Journal Article -
3
CaRoLS: Condition-adaptive multi-level road layout synthesis
ISSN: 0097-8493Veröffentlicht: Elsevier Ltd 01.12.2025Veröffentlicht in Computers & graphics (01.12.2025)“… We propose CaRoLS, a unified two-stage method for condition-adaptive multi-level road layout synthesis …”
Volltext
Journal Article -
4
Optimizing Diffusion Model Training Efficiency to Generate High-Resolution Images
Veröffentlicht: IEEE 06.06.2025Veröffentlicht in 2025 International Conference on Intelligent Computing and Knowledge Extraction (ICICKE) (06.06.2025)“… , and constructs a fusion architecture of conditional input and latent representation. This paper uses Vector Quantized-Variational AutoEncoder (VQ-VAE …”
Volltext
Tagungsbericht -
5
Deep Probabilistic Modeling for Causal Inference and Decision Making
ISBN: 9798288861840Veröffentlicht: ProQuest Dissertations & Theses 01.01.2025“… Prior works using variational inference in counterfactual generative modeling have been focusing …”
Volltext
Dissertation -
6
DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.03.2024Veröffentlicht in arXiv.org (20.03.2024)“… To address this limitation, we propose Domain-agnostic Latent Diffusion Model for INRs (DDMI) that generates adaptive positional embeddings instead of neural networks' weights …”
Volltext
Paper

