Suchergebnisse - (( dynamic code analysis of python programs ) OR ( dynamic code analysis of python progress ))~

  1. 1

    TESTING THE DYNAMIC EXECUTION OF PYTHON PROGRAM CODE DURING THE CERTIFICATION TESTING (DEVELOPMENT) STAGE IN THE CERTIFICATION SYSTEM OF THE MINISTRY OF DEFENSE OF RUSSIA von V.V. Samarov

    ISSN: 2307-4205
    Veröffentlicht: Penza State University Publishing House 01.06.2023
    “… When checking applications developed in the Python language for compliance of their code with the requirements of the governing document "Protection against unauthorized access to information. Part 1 …”
    Volltext
    Journal Article
  2. 2

    Dynamic Generation of Python Bindings for HPC Kernels von Zhu, Steven, AlAwar, Nader, Erez, Mattan, Gligoric, Milos

    ISSN: 2643-1572
    Veröffentlicht: IEEE 01.11.2021
    “… A recent trend among scientists-prototyping applications in dynamic languages such as Python-created a gap between the applications and existing HPKs …”
    Volltext
    Tagungsbericht
  3. 3

    WEDAP: A Python Package for Streamlined Plotting of Molecular Simulation Data von Yang, Darian T, Chong, Lillian T

    ISSN: 1549-960X, 1549-960X
    Veröffentlicht: United States 12.08.2024
    Veröffentlicht in Journal of chemical information and modeling (12.08.2024)
    “… Here, we present the WEDAP Python package for simplifying the analysis of data generated from either conventional MD simulations or the weighted ensemble …”
    Weitere Angaben
    Journal Article
  4. 4

    GraphPyRec: A novel graph-based approach for fine-grained Python code recommendation von Zong, Xing, Zheng, Shang, Zou, Haitao, Yu, Hualong, Gao, Shang

    ISSN: 0167-6423
    Veröffentlicht: Elsevier B.V 01.12.2024
    Veröffentlicht in Science of computer programming (01.12.2024)
    “… Significant progress has been made in code recommendation for static languages in recent years, but it remains challenging for dynamic languages like Python as accurately determining data flows …”
    Volltext
    Journal Article
  5. 5

    Python for the Life Sciences - A Gentle Introduction to Python for Life Scientists von Lancaster, Alex, Webster, Gordon

    ISBN: 1484245229, 9781484245224, 1484245237, 9781484245231
    Veröffentlicht: Berkeley, CA Apress, an imprint of Springer Nature 2019
    “… The book was written specifically for biologists with little or no prior experience of writing code - with the goal of giving them not only a foundation in Python programming, but also the confidence …”
    Volltext
    E-Book Buch
  6. 6

    AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL von Cercos-Pita, J.L.

    ISSN: 0010-4655, 1879-2944
    Veröffentlicht: Elsevier B.V 01.07.2015
    Veröffentlicht in Computer physics communications (01.07.2015)
    “… ), the implementation of the most popular boundary conditions, the easy customization of the code to different problems, the extensibility with regard to Python scripts, and the runtime output …”
    Volltext
    Journal Article
  7. 7

    The development of an automated microscope image tracking and analysis system von McAfee, Lillian, Heath, Zach, Anderson, William, Hozi, Marvin, Orr, John Walker, Kang, Youngbok (Abraham)

    ISSN: 8756-7938, 1520-6033, 1520-6033
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.11.2024
    Veröffentlicht in Biotechnology progress (01.11.2024)
    “… The program of cell analyzer was written in Python utilizing the open source computer vision (OpenCV …”
    Volltext
    Journal Article
  8. 8

    Fast tumor phylogeny regression via tree-structured dual dynamic programming von Schmidt, Henri, Qi, Yuanyuan, Raphael, Benjamin J, El-Kebir, Mohammed

    ISSN: 1367-4803, 1367-4811, 1367-4811
    Veröffentlicht: England Oxford Publishing Limited (England) 01.07.2025
    Veröffentlicht in Bioinformatics (Oxford, England) (01.07.2025)
    “… tissue and inference of its evolutionary history. Recently, phylogenetic reconstruction methods have made significant progress by breaking the reconstruction problem into two parts …”
    Volltext
    Journal Article
  9. 9

    Effects of Infusing Interactive and Collaborative Learning to Teach an Introductory Programming Course von Rahman, Md Mahmudur, Paudel, Roshan, Sharker, Monir H

    ISSN: 2377-634X
    Veröffentlicht: IEEE 01.10.2019
    Veröffentlicht in Proceedings - Frontiers in Education Conference (01.10.2019)
    “… In addition, we used an eBook, which offers an animation and software visualization tool where students can step through code line-by-line and a program editing and execution area where students …”
    Volltext
    Tagungsbericht
  10. 10

    Preliminary Experience and Learning Outcomes by Infusing Interactive and Active Learning to Teach an Introductory Programming Course in Python von Rahman, Md Mahmudur, Paudel, Roshan

    Veröffentlicht: Athens The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) 01.01.2018
    “… ) maps to a highly dynamic process (program execution). The program execution is typically illustrated using graphical PowerPoint lecture slides or by drawing diagrams on a whiteboard, which is tedious and error prone and requires huge effort …”
    Volltext
    Tagungsbericht
  11. 11

    Evaluating test quality of Python libraries for IoT applications at the network edge von Chen, Zhifei, Jia, Chiheng, Chen, Lin

    ISSN: 1022-0038, 1572-8196
    Veröffentlicht: New York Springer US 01.10.2024
    Veröffentlicht in Wireless networks (01.10.2024)
    “… Due to the difficulty of static program analysis on dynamic languages, the quality of test code in Python libraries for IoT development faces a serious threat, which in turn affects the performance of IoT applications …”
    Volltext
    Journal Article
  12. 12

    Mining Python fix patterns via analyzing fine-grained source code changes von Yang, Yilin, He, Tianxing, Feng, Yang, Liu, Shaoying, Xu, Baowen

    ISSN: 1382-3256, 1573-7616
    Veröffentlicht: New York Springer US 01.03.2022
    “… ); yet the fix patterns proposed by these studies can not be directly applied to improve Python programs because of syntactic incompatibilities and lack of analysis of dynamic features …”
    Volltext
    Journal Article
  13. 13

    MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics von Haiman, Zachary B., Zielinski, Daniel C., Koike, Yuko, Yurkovich, James T., Palsson, Bernhard O.

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 28.01.2021
    Veröffentlicht in PLoS computational biology (28.01.2021)
    “… MASSpy adds dynamic modeling tools to the COnstraint-Based Reconstruction and Analysis Python (COBRApy …”
    Volltext
    Journal Article
  14. 14

    Piloting the Inclusion of the Key Populations Unique Identifier Code in the South African Routine Health Information Management System: Protocol for a Multiphased Study von Rampilo, Mashudu, Phalane, Edith, Phaswana-Mafuya, Refilwe Nancy

    ISSN: 1929-0748, 1929-0748
    Veröffentlicht: Canada JMIR Publications 06.09.2024
    Veröffentlicht in JMIR research protocols (06.09.2024)
    “… Significant progress has been achieved in pursuing these objectives; however, concerns remain regarding the lack of disaggregated routine data for key populations (KPs …”
    Volltext
    Journal Article
  15. 15

    Introduction to Python Dynamic Diffraction Toolkit ( PyDDT ): structural refinement of single crystals via X-ray phase measurements von Penacchio, Rafaela F. S., Estradiote, Maurício B., Remédios, Cláudio M. R., Calligaris, Guilherme A., Torikachvili, Milton S., Kycia, Stefan W., Morelhão, Sérgio L.

    ISSN: 1600-5767, 0021-8898, 1600-5767
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.10.2023
    Veröffentlicht in Journal of applied crystallography (01.10.2023)
    “… PyDDT is a free Python package of computer codes for exploiting X-ray dynamic multiple diffraction in single crystals …”
    Volltext
    Journal Article
  16. 16

    SciPy 1.0: fundamental algorithms for scientific computing in Python von Virtanen, Pauli, Gommers, Ralf, Oliphant, Travis E., Haberland, Matt, Reddy, Tyler, Cournapeau, David, Burovski, Evgeni, Peterson, Pearu, Weckesser, Warren, Bright, Jonathan, van der Walt, Stéfan J., Brett, Matthew, Wilson, Joshua, Millman, K. Jarrod, Mayorov, Nikolay, Nelson, Andrew R. J., Jones, Eric, Kern, Robert, Larson, Eric, Carey, C J, Polat, İlhan, Feng, Yu, Moore, Eric W., VanderPlas, Jake, Laxalde, Denis, Perktold, Josef, Cimrman, Robert, Henriksen, Ian, Quintero, E. A., Harris, Charles R., Archibald, Anne M., Ribeiro, Antônio H., Pedregosa, Fabian, van Mulbregt, Paul

    ISSN: 1548-7091, 1548-7105, 1548-7105
    Veröffentlicht: New York Nature Publishing Group US 01.03.2020
    Veröffentlicht in Nature methods (01.03.2020)
    “… Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages …”
    Volltext
    Journal Article
  17. 17

    Generative Type Inference for Python von Peng, Yun, Wang, Chaozheng, Wang, Wenxuan, Gao, Cuiyun, Lyu, Michael R.

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… However, its dynamic type system can lead to potential type errors, leading researchers to explore automatic type inference approaches for Python programs …”
    Volltext
    Tagungsbericht
  18. 18

    i-PI: A Python interface for ab initio path integral molecular dynamics simulations von Ceriotti, Michele, More, Joshua, Manolopoulos, David E.

    ISSN: 0010-4655, 1879-2944
    Veröffentlicht: Elsevier B.V 01.03.2014
    Veröffentlicht in Computer physics communications (01.03.2014)
    “… Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program …”
    Volltext
    Journal Article
  19. 19

    SIMA: Python software for analysis of dynamic fluorescence imaging data von Kaifosh, Patrick, Zaremba, Jeffrey D., Danielson, Nathan B., Losonczy, Attila

    ISSN: 1662-5196, 1662-5196
    Veröffentlicht: Switzerland Frontiers Research Foundation 23.09.2014
    Veröffentlicht in Frontiers in neuroinformatics (23.09.2014)
    “… However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools …”
    Volltext
    Journal Article
  20. 20

    Dynamic Slicing of Python Programs von Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu, Chu, William C., Baowen Xu

    ISSN: 0730-3157
    Veröffentlicht: IEEE 01.07.2014
    “… In this paper, we propose an approach of dynamic slicing for Python programs which combines static analysis and dynamic tracing of the Python byte code …”
    Volltext
    Tagungsbericht Journal Article