Suchergebnisse - (( (statni OR state:ny) python code analysis ) OR ( stat python code analysis ))*

  1. 1

    Percolation theory using Python von Malthe-Sørenssen, Anders

    ISBN: 3031598997, 9783031598999, 3031599004, 9783031599002
    Veröffentlicht: Cham Springer 2024
    “… Readers will learn how to generate, analyze, and comprehend data and models, with detailed theoretical discussions complemented by accessible computer codes …”
    Volltext
    E-Book Buch
  2. 2

    Python Data Analyst's Toolkit - Learn Python and Python-Based Libraries with Applications in Data Analysis and Statistics von Rajagopalan, Gayathri

    ISBN: 9781484263983, 1484263987, 9781484263990, 1484263995
    Veröffentlicht: Berkeley, CA Apress, an imprint of Springer Nature 2021
    “… The code is presented in Jupyter notebooks that can further be adapted and extended. This book is divided into three parts - programming with Python, data analysis and visualization, and statistics …”
    Volltext
    E-Book Buch
  3. 3

    Decoding the JAK-STAT Axis in Colorectal Cancer with AI-HOPE-JAK-STAT: A Conversational Artificial Intelligence Approach to Clinical–Genomic Integration von Yang, Ei-Wen, Waldrup, Brigette, Velazquez-Villarreal, Enrique

    ISSN: 2072-6694, 2072-6694
    Veröffentlicht: Switzerland MDPI AG 17.07.2025
    Veröffentlicht in Cancers (17.07.2025)
    “… : AI-HOPE-JAK-STAT combines large language models (LLMs), a natural language-to-code engine, and harmonized public CRC datasets from cBioPortal …”
    Volltext
    Journal Article
  4. 4

    Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial von Smith, Matthew J., Mansournia, Mohammad A., Maringe, Camille, Zivich, Paul N., Cole, Stephen R., Leyrat, Clémence, Belot, Aurélien, Rachet, Bernard, Luque‐Fernandez, Miguel A.

    ISSN: 0277-6715, 1097-0258, 1097-0258
    Veröffentlicht: England Wiley Subscription Services, Inc 30.01.2022
    Veröffentlicht in Statistics in medicine (30.01.2022)
    “… The main purpose of many medical studies is to estimate the effects of a treatment or exposure on an outcome. However, it is not always possible to randomize …”
    Volltext
    Journal Article
  5. 5

    LiPydomics: A Python Package for Comprehensive Prediction of Lipid Collision Cross Sections and Retention Times and Analysis of Ion Mobility-Mass Spectrometry-Based Lipidomics Data von Ross, Dylan H, Cho, Jang Ho, Zhang, Rutan, Hines, Kelly M, Xu, Libin

    ISSN: 1520-6882, 1520-6882
    Veröffentlicht: United States 17.11.2020
    Veröffentlicht in Analytical chemistry (Washington) (17.11.2020)
    “… Existing solutions for these data analysis challenges (i.e., multivariate statistics and lipid identification …”
    Weitere Angaben
    Journal Article
  6. 6

    Python for MATLAB Development - Extend MATLAB with 300,000+ Modules from the Python Package Index von Danial, Albert

    ISBN: 9781484272220, 1484272226, 1484272234, 9781484272237
    Veröffentlicht: Berkeley, CA Apress, an imprint of Springer Nature 2022
    “… This book shows you how to enhance MATLAB with Python solutions to a vast array of computational problems in science, engineering, optimization, statistics, finance, and simulation …”
    Volltext
    E-Book
  7. 7

    MEG and EEG data analysis with MNE-Python von Gramfort, Alexandre

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Veröffentlicht: Switzerland Frontiers Research Foundation 26.12.2013
    Veröffentlicht in Frontiers in neuroscience (26.12.2013)
    “… As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple …”
    Volltext
    Journal Article
  8. 8

    Statistics Using Python von Campesato, Oswald

    ISBN: 9781683928805, 1683928806
    Veröffentlicht: Berlin Mercury Learning and Information 2024
    “… This book is designed to offer a fast-paced yet thorough introduction to essential statistical concepts using Python code samples, and aims to assist data scientists in their daily endeavors …”
    Volltext
    E-Book
  9. 9

    Domain Knowledge Matters: Improving Prompts with Fix Templates for Repairing Python Type Errors von Peng, Yun, Gao, Shuzheng, Gao, Cuiyun, Huo, Yintong, Lyu, Michael R.

    ISSN: 1558-1225
    Veröffentlicht: ACM 14.04.2024
    “… As a dynamic programming language, Python has become increasingly popular in recent years …”
    Volltext
    Tagungsbericht
  10. 10

    Discovering Repetitive Code Changes in Python ML Systems von Dilhara, Malinda, Ketkar, Ameya, Sannidhi, Nikhith, Dig, Danny

    ISSN: 1558-1225
    Veröffentlicht: ACM 01.05.2022
    “… Despite the extraordinary rise in popularity of Python-based ML systems, they do not benefit from these advances …”
    Volltext
    Tagungsbericht
  11. 11

    Evaluating Large Language Models in Class-Level Code Generation von Du, Xueying, Liu, Mingwei, Wang, Kaixin, Wang, Hanlin, Liu, Junwei, Chen, Yixuan, Feng, Jiayi, Sha, Chaofeng, Peng, Xin, Lou, Yiling

    ISSN: 1558-1225
    Veröffentlicht: ACM 14.04.2024
    “… Recently, many large language models (LLMs) have been proposed, showing advanced proficiency in code generation …”
    Volltext
    Tagungsbericht
  12. 12

    PyAnalyzer: An Effective and Practical Approach for Dependency Extraction from Python Code von Jin, Wuxia, Xu, Shuo, Chen, Dawei, He, Jiajun, Zhong, Dinghong, Fan, Ming, Chen, Hongxu, Zhang, Huijia, Liu, Ting

    ISSN: 1558-1225
    Veröffentlicht: ACM 14.04.2024
    “… However, dynamic language features in Python make code behaviors obscure and nondeter-ministic …”
    Volltext
    Tagungsbericht
  13. 13

    Code2graph: Automatic Generation of Static Call Graphs for Python Source Code von Gharibi, Gharib, Tripathi, Rashmi, Lee, Yugyung

    ISSN: 2643-1572
    Veröffentlicht: ACM 01.09.2018
    “… However, there is a lack of software tools that can automatically analyze the Python source-code and construct its static call graph …”
    Volltext
    Tagungsbericht
  14. 14

    SIMA: Python software for analysis of dynamic fluorescence imaging data von Kaifosh, Patrick, Zaremba, Jeffrey D., Danielson, Nathan B., Losonczy, Attila

    ISSN: 1662-5196, 1662-5196
    Veröffentlicht: Switzerland Frontiers Research Foundation 23.09.2014
    Veröffentlicht in Frontiers in neuroinformatics (23.09.2014)
    “… To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging …”
    Volltext
    Journal Article
  15. 15

    Towards Effective Static Type-Error Detection for Python von Oh, Wonseok, Oh, Hakjoo

    ISSN: 2643-1572
    Veröffentlicht: ACM 27.10.2024
    “… This empirical investigation revealed four key static-analysis features that are crucial for the effective detection of Python type errors in practice …”
    Volltext
    Tagungsbericht
  16. 16

    TypeEvalPy: A Micro-Benchmarking Framework for Python Type Inference Tools von Venkatesh, Ashwin Prasad S., Sabu, Samkutty, Wang, Jiawei, Mir, Amir M., Li, Li, Bodden, Eric

    ISSN: 2574-1934
    Veröffentlicht: ACM 14.04.2024
    “… TYPE-EVALPy contains 154 code snippets with 845 type annotations across 18 categories that target various Python features …”
    Volltext
    Tagungsbericht
  17. 17

    Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data von Pakkir Shah, Abzer K., Walter, Axel, Ottosson, Filip, Russo, Francesco, Navarro-Diaz, Marcelo, Boldt, Judith, Kalinski, Jarmo-Charles J., Kontou, Eftychia Eva, Elofson, James, Polyzois, Alexandros, González-Marín, Carolina, Farrell, Shane, Aggerbeck, Marie R., Pruksatrakul, Thapanee, Chan, Nathan, Wang, Yunshu, Pöchhacker, Magdalena, Brungs, Corinna, Cámara, Beatriz, Caraballo-Rodríguez, Andrés Mauricio, Cumsille, Andres, de Oliveira, Fernanda, Dührkop, Kai, El Abiead, Yasin, Geibel, Christian, Graves, Lana G., Hansen, Martin, Heuckeroth, Steffen, Knoblauch, Simon, Kostenko, Anastasiia, Kuijpers, Mirte C. M., Mildau, Kevin, Papadopoulos Lambidis, Stilianos, Portal Gomes, Paulo Wender, Schramm, Tilman, Steuer-Lodd, Karoline, Stincone, Paolo, Tayyab, Sibgha, Vitale, Giovanni Andrea, Wagner, Berenike C., Xing, Shipei, Yazzie, Marquis T., Zuffa, Simone, de Kruijff, Martinus, Beemelmanns, Christine, Link, Hannes, Mayer, Christoph, van der Hooft, Justin J. J., Damiani, Tito, Pluskal, Tomáš, Dorrestein, Pieter, Stanstrup, Jan, Schmid, Robin, Wang, Mingxun, Aron, Allegra, Ernst, Madeleine, Petras, Daniel

    ISSN: 1754-2189, 1750-2799, 1750-2799
    Veröffentlicht: London Nature Publishing Group UK 01.01.2025
    Veröffentlicht in Nature protocols (01.01.2025)
    “… We provide explanations and code in two scripting languages (R and Python) as well …”
    Volltext
    Journal Article
  18. 18

    From code to reliability: Python-powered Paraconsistent Logic for alarm detection in the power gris/ Do codigo a confiabilidade: Logica Paraconsistente impulsionada por Python para a deteccao de alarmes na rede de energia von de Oliveira, Joseffe Barroso, Gino, Joao Vitor Santa Rosa, de Lima, Carlos Jose, Filho, Joao Inacio da Silva

    ISSN: 2178-9010, 2178-9010
    Veröffentlicht: Sindicato das Secretarias e Secretarios do Estado de Sao Paulo 01.10.2023
    Veröffentlicht in GeSec : Revista de Gestão e Secretariado (01.10.2023)
    “… This application enables the comparison of triggered alarms with the resultant logical states obtained during the analysis …”
    Volltext
    Journal Article
  19. 19

    Multi-Step Automated Generation of Parameter Docstrings in Python: An Exploratory Study von Venkatkrishna, Vatsal, Nagabushanam, Durga Shree, Simon, Emmanuel Iko-Ojo, Vidoni, Melina

    ISSN: 2574-1934
    Veröffentlicht: ACM 14.04.2024
    “… Documentation debt hinders the effective utilisation of open-source software. Although code summarisation tools have been helpful for developers, most would …”
    Volltext
    Tagungsbericht
  20. 20

    A Python Instrument Control and Data Acquisition Suite for Reproducible Research von Koerner, Lucas J., Caswell, Thomas A., Allan, Daniel B., Campbell, Stuart I.

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 01.04.2020
    “… The National Synchrotron Light Source-II (NSLS-II) has generated an open-source Python data acquisition, management, and analysis software suite that automates X-ray …”
    Volltext
    Journal Article