Suchergebnisse - (( (statee OR state:new) python code analysis ) OR ( stat python code analysis ))~

  1. 1

    Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial von Smith, Matthew J., Mansournia, Mohammad A., Maringe, Camille, Zivich, Paul N., Cole, Stephen R., Leyrat, Clémence, Belot, Aurélien, Rachet, Bernard, Luque‐Fernandez, Miguel A.

    ISSN: 0277-6715, 1097-0258, 1097-0258
    Veröffentlicht: England Wiley Subscription Services, Inc 30.01.2022
    Veröffentlicht in Statistics in medicine (30.01.2022)
    “… The main purpose of many medical studies is to estimate the effects of a treatment or exposure on an outcome. However, it is not always possible to randomize …”
    Volltext
    Journal Article
  2. 2

    LiPydomics: A Python Package for Comprehensive Prediction of Lipid Collision Cross Sections and Retention Times and Analysis of Ion Mobility-Mass Spectrometry-Based Lipidomics Data von Ross, Dylan H, Cho, Jang Ho, Zhang, Rutan, Hines, Kelly M, Xu, Libin

    ISSN: 1520-6882, 1520-6882
    Veröffentlicht: United States 17.11.2020
    Veröffentlicht in Analytical chemistry (Washington) (17.11.2020)
    “… Existing solutions for these data analysis challenges (i.e., multivariate statistics and lipid identification …”
    Weitere Angaben
    Journal Article
  3. 3

    From code to reliability: Python-powered Paraconsistent Logic for alarm detection in the power gris/ Do codigo a confiabilidade: Logica Paraconsistente impulsionada por Python para a deteccao de alarmes na rede de energia von de Oliveira, Joseffe Barroso, Gino, Joao Vitor Santa Rosa, de Lima, Carlos Jose, Filho, Joao Inacio da Silva

    ISSN: 2178-9010, 2178-9010
    Veröffentlicht: Sindicato das Secretarias e Secretarios do Estado de Sao Paulo 01.10.2023
    Veröffentlicht in GeSec : Revista de Gestão e Secretariado (01.10.2023)
    “… This application enables the comparison of triggered alarms with the resultant logical states obtained during the analysis …”
    Volltext
    Journal Article
  4. 4

    Decoding the JAK-STAT Axis in Colorectal Cancer with AI-HOPE-JAK-STAT: A Conversational Artificial Intelligence Approach to Clinical–Genomic Integration von Yang, Ei-Wen, Waldrup, Brigette, Velazquez-Villarreal, Enrique

    ISSN: 2072-6694, 2072-6694
    Veröffentlicht: Switzerland MDPI AG 17.07.2025
    Veröffentlicht in Cancers (17.07.2025)
    “… : AI-HOPE-JAK-STAT combines large language models (LLMs), a natural language-to-code engine, and harmonized public CRC datasets from cBioPortal …”
    Volltext
    Journal Article
  5. 5

    Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data von Pakkir Shah, Abzer K., Walter, Axel, Ottosson, Filip, Russo, Francesco, Navarro-Diaz, Marcelo, Boldt, Judith, Kalinski, Jarmo-Charles J., Kontou, Eftychia Eva, Elofson, James, Polyzois, Alexandros, González-Marín, Carolina, Farrell, Shane, Aggerbeck, Marie R., Pruksatrakul, Thapanee, Chan, Nathan, Wang, Yunshu, Pöchhacker, Magdalena, Brungs, Corinna, Cámara, Beatriz, Caraballo-Rodríguez, Andrés Mauricio, Cumsille, Andres, de Oliveira, Fernanda, Dührkop, Kai, El Abiead, Yasin, Geibel, Christian, Graves, Lana G., Hansen, Martin, Heuckeroth, Steffen, Knoblauch, Simon, Kostenko, Anastasiia, Kuijpers, Mirte C. M., Mildau, Kevin, Papadopoulos Lambidis, Stilianos, Portal Gomes, Paulo Wender, Schramm, Tilman, Steuer-Lodd, Karoline, Stincone, Paolo, Tayyab, Sibgha, Vitale, Giovanni Andrea, Wagner, Berenike C., Xing, Shipei, Yazzie, Marquis T., Zuffa, Simone, de Kruijff, Martinus, Beemelmanns, Christine, Link, Hannes, Mayer, Christoph, van der Hooft, Justin J. J., Damiani, Tito, Pluskal, Tomáš, Dorrestein, Pieter, Stanstrup, Jan, Schmid, Robin, Wang, Mingxun, Aron, Allegra, Ernst, Madeleine, Petras, Daniel

    ISSN: 1754-2189, 1750-2799, 1750-2799
    Veröffentlicht: London Nature Publishing Group UK 01.01.2025
    Veröffentlicht in Nature protocols (01.01.2025)
    “… Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices …”
    Volltext
    Journal Article
  6. 6

    Generation of Scale-Free Assortative Networks via Newman Rewiring for Simulation of Diffusion Phenomena von Di Lucchio, Laura, Modanese, Giovanni

    ISSN: 2571-905X, 2571-905X
    Veröffentlicht: Basel MDPI AG 01.02.2024
    Veröffentlicht in Stats (Basel, Switzerland) (01.02.2024)
    “… By collecting and expanding several numerical recipes developed in previous work, we implement an object-oriented Python code, based on the networkX library, for the realization of the configuration …”
    Volltext
    Journal Article
  7. 7

    Percolation theory using Python von Malthe-Sørenssen, Anders

    ISBN: 3031598997, 9783031598999, 3031599004, 9783031599002
    Veröffentlicht: Cham Springer 2024
    “… Readers will learn how to generate, analyze, and comprehend data and models, with detailed theoretical discussions complemented by accessible computer codes …”
    Volltext
    E-Book Buch
  8. 8

    Identification of Novel Microcystins Using High-Resolution MS and MSn with Python Code von Baliu-Rodriguez, David, Peraino, Nicholas J, Premathilaka, Sanduni H, Birbeck, Johnna A, Baliu-Rodriguez, Tomás, Westrick, Judy A, Isailovic, Dragan

    ISSN: 1520-5851, 1520-5851
    Veröffentlicht: 01.02.2022
    Veröffentlicht in Environmental science & technology (01.02.2022)
    “… ) coupled with high-resolution (HR) Orbitrap mass spectrometry (MS) and a new bottom-up sequencing strategy …”
    Weitere Angaben
    Journal Article
  9. 9

    Python Data Analyst's Toolkit - Learn Python and Python-Based Libraries with Applications in Data Analysis and Statistics von Rajagopalan, Gayathri

    ISBN: 9781484263983, 1484263987, 9781484263990, 1484263995
    Veröffentlicht: Berkeley, CA Apress, an imprint of Springer Nature 2021
    “… The code is presented in Jupyter notebooks that can further be adapted and extended. This book is divided into three parts - programming with Python, data analysis and visualization, and statistics …”
    Volltext
    E-Book Buch
  10. 10

    GSEApy: a comprehensive package for performing gene set enrichment analysis in Python von Fang, Zhuoqing, Liu, Xinyuan, Peltz, Gary

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 01.01.2023
    Veröffentlicht in Bioinformatics (Oxford, England) (01.01.2023)
    “… Abstract Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes …”
    Volltext
    Journal Article
  11. 11

    MetPy: A Meteorological Python Library for Data Analysis and Visualization von May, Ryan M., Goebbert, Kevin H., Thielen, Jonathan E., Leeman, John R., Camron, M. Drew, Bruick, Zachary, Bruning, Eric C., Manser, Russell P., Arms, Sean C., Marsh, Patrick T.

    ISSN: 0003-0007, 1520-0477
    Veröffentlicht: Boston American Meteorological Society 01.10.2022
    Veröffentlicht in Bulletin of the American Meteorological Society (01.10.2022)
    “… MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries …”
    Volltext
    Journal Article
  12. 12

    Pyteomics—a Python Framework for Exploratory Data Analysis and Rapid Software Prototyping in Proteomics von Goloborodko, Anton A., Levitsky, Lev I., Ivanov, Mark V., Gorshkov, Mikhail V.

    ISSN: 1044-0305, 1879-1123, 1879-1123
    Veröffentlicht: New York Springer-Verlag 01.02.2013
    “… Pyteomics is a cross-platform, open-source Python library providing a rich set of tools for MS-based proteomics …”
    Volltext
    Journal Article
  13. 13

    Python for MATLAB Development - Extend MATLAB with 300,000+ Modules from the Python Package Index von Danial, Albert

    ISBN: 9781484272220, 1484272226, 1484272234, 9781484272237
    Veröffentlicht: Berkeley, CA Apress, an imprint of Springer Nature 2022
    “… This book shows you how to enhance MATLAB with Python solutions to a vast array of computational problems in science, engineering, optimization, statistics, finance, and simulation …”
    Volltext
    E-Book
  14. 14

    Statistics Using Python von Campesato, Oswald

    ISBN: 9781683928805, 1683928806
    Veröffentlicht: Berlin Mercury Learning and Information 2024
    “… This book is designed to offer a fast-paced yet thorough introduction to essential statistical concepts using Python code samples, and aims to assist data scientists in their daily endeavors …”
    Volltext
    E-Book
  15. 15

    stk: A python toolkit for supramolecular assembly von Turcani, Lukas, Berardo, Enrico, Jelfs, Kim E.

    ISSN: 0192-8651, 1096-987X, 1096-987X
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 05.09.2018
    Veröffentlicht in Journal of computational chemistry (05.09.2018)
    “… stk is a modular, extensible and open‐source Python library that provides a simple Python API and integration with third party computational codes …”
    Volltext
    Journal Article
  16. 16

    Coherent manipulation of the internal state of ultracold 87Rb133Cs molecules with multiple microwave fields von Blackmore, Jacob A, Gregory, Philip D, Bromley, Sarah L, Cornish, Simon L

    ISSN: 1463-9084, 1463-9084
    Veröffentlicht: 21.12.2020
    Veröffentlicht in Physical chemistry chemical physics : PCCP (21.12.2020)
    “… We explore coherent multi-photon processes in 87Rb133Cs molecules using 3-level lambda and ladder configurations of rotational and hyperfine states, and discuss their relevance to future applications …”
    Weitere Angaben
    Journal Article
  17. 17

    scFates: a scalable python package for advanced pseudotime and bifurcation analysis from single-cell data von Faure, Louis, Soldatov, Ruslan, Kharchenko, Peter V, Adameyko, Igor

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 01.01.2023
    Veröffentlicht in Bioinformatics (Oxford, England) (01.01.2023)
    “… Abstract Summary scFates provides an extensive toolset for the analysis of dynamic trajectories comprising tree learning, feature association testing, branch differential expression and with a …”
    Volltext
    Journal Article
  18. 18

    pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods von Behdenna, Abdelkader, Colange, Maximilien, Haziza, Julien, Gema, Aryo, Appé, Guillaume, Azencott, Chloé-Agathe, Nordor, Akpéli

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 07.12.2023
    Veröffentlicht in BMC bioinformatics (07.12.2023)
    “… Results In this technical note, we present a new Python implementation of ComBat and ComBat-Seq …”
    Volltext
    Journal Article
  19. 19

    Short communication: age2exhume – a MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya von van der Beek, Peter, Schildgen, Taylor F.

    ISSN: 2628-3719, 2628-3697, 2628-3719
    Veröffentlicht: Göttingen Copernicus GmbH 16.01.2023
    Veröffentlicht in Geochronology (Göttingen. Online) (16.01.2023)
    “… datasets in such models remains challenging. Here, we present age2exhume, a thermal model in the form of a MATLAB or Python script, which can be used to rapidly obtain …”
    Volltext
    Journal Article
  20. 20