Výsledky vyhledávání - theory of computation theory and algorithms for applications domains machinery learning theory

  1. 1

    Structured Learning with Parsimony in Measurements and Computations: Theory, Algorithms, and Applications Autor Li, Xingguo

    ISBN: 9780438353886, 0438353889
    Vydáno: ProQuest Dissertations & Theses 01.01.2018
    “…In modern “Big Data” applications, structured learning is the most widely employed methodology…”
    Získat plný text
    Dissertation
  2. 2

    Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise Autor Wu, Jian, Sheng, Victor S, Zhang, Jing, Li, Hua, Dadakova, Tetiana, Swisher, Christine Leon, Cui, Zhiming, Zhao, Pengpeng

    ISSN: 0360-0300
    Vydáno: United States 01.06.2020
    Vydáno v ACM computing surveys (01.06.2020)
    “… Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification…”
    Zjistit podrobnosti o přístupu
    Journal Article
  3. 3

    Multi-Structural Games and Number of Quantifiers Autor Fagin, Ronald, Lenchner, Jonathan, Regan, Kenneth W., Vyas, Nikhil

    Vydáno: IEEE 29.06.2021
    “… to distinguish linear orders of different sizes, and develop machinery for analyzing structures beyond linear orders…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    SLIM: a Scalable and Interpretable Light-weight Fault Localization Algorithm for Imbalanced Data in Microservice Autor Ren, Rui, Yang, Jingbang, Yang, Linxiao, Gu, Xinyue, Sun, Liang

    ISSN: 2643-1572
    Vydáno: ACM 27.10.2024
    “…) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Accelerating Decision-Tree-Based Inference Through Adaptive Parallelization Autor Van Lunteren, Jan

    Vydáno: IEEE 21.10.2023
    “…Gradient-boosted trees and random forests are among the most popular machine learning algorithms…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    AutoDW: Automatic Data Wrangling Leveraging Large Language Models Autor Liu, Lei, Hasegawa, So, Sampat, Shailaja Keyur, Xenochristou, Maria, Chen, Wei-Peng, Kato, Takashi, Kakibuchi, Taisei, Asai, Tatsuya

    ISSN: 2643-1572
    Vydáno: ACM 27.10.2024
    “…Data wrangling is a critical yet often labor-intensive process, essential for transforming raw data into formats suitable for downstream tasks such as machine learning or data analysis…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Activation Sequence Caching: High-Throughput and Memory-Efficient Generative Inference with a Single GPU Autor Kim, Sowoong, Sim, Eunyeong, Shin, Youngsam, Cho, YeonGon, Baek, Woongki

    Vydáno: ACM 13.10.2024
    “… To bridge this gap, this work presents an in-depth characterization study of KVC, which demonstrates that KVC makes a suboptimal trade-off between computations and communications…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Self-Supervised Representation Learning and Temporal-Spectral Feature Fusion for Bed Occupancy Detection Autor Song, Yingjian, Pitafi, Zaid Farooq, Dou, Fei, Sun, Jin, Zhang, Xiang, Phillips, Bradley G, Song, Wenzhan

    ISSN: 2474-9567, 2474-9567
    Vydáno: United States 01.09.2024
    “… This paper introduces SeismoDot, which consists of a self-supervised learning module and a spectral-temporal feature fusion module for bed occupancy detection…”
    Zjistit podrobnosti o přístupu
    Journal Article
  9. 9
  10. 10

    ALISE: Accelerating Large Language Model Serving with Speculative Scheduling Autor Zhao, Youpeng, Wang, Jun

    ISSN: 1558-2434
    Vydáno: ACM 27.10.2024
    “…). As exemplified by ChatGPT, LLM-based applications necessitate minimal response latency and maximal throughput for inference serving…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Bayesian synthesis of probabilistic programs for automatic data modeling Autor Saad, Feras A., Cusumano-Towner, Marco F., Schaechtle, Ulrich, Rinard, Martin C., Mansinghka, Vikash K.

    ISSN: 2475-1421, 2475-1421
    Vydáno: New York, NY, USA ACM 02.01.2019
    “… We also derive a general class of synthesis algorithms for domain-specific languages specified by probabilistic context-free grammars and establish the soundness of our approach for these languages…”
    Získat plný text
    Journal Article
  12. 12

    Local Higher-Order Graph Clustering Autor Yin, Hao, Benson, Austin R, Leskovec, Jure, Gleich, David F

    ISSN: 2154-817X
    Vydáno: United States 01.08.2017
    “…Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable…”
    Zjistit podrobnosti o přístupu
    Journal Article
  13. 13

    Distinguishing Hidden Markov Chains Autor Kiefer, Stefan, Sistla, A. Prasad

    ISBN: 9781450343916, 1450343910
    Vydáno: New York, NY, USA ACM 05.07.2016
    “… Motivated by applications in stochastic runtime verification, we consider the problem of distinguishing two given HMCs based on a single observation sequence that one of the HMCs generates…”
    Získat plný text
    Konferenční příspěvek
  14. 14
  15. 15

    Linear Scheduling of Big Data Streams on Multiprocessor Sets in the Cloud Autor Tantalaki, Nicoleta, Souravlas, Stavros, Roumeliotis, Manos, Katsavounis, Stefanos

    ISBN: 1450369340, 9781450369343
    Vydáno: New York, NY, USA ACM 14.10.2019
    “… (dynamically or not) and route streaming data between them. Efficient scheduling of processing tasks of data flows can reduce application latencies and eliminate network congestion…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    A Memory-Efficient Markov Decision Process Computation Framework Using BDD-based Sampling Representation Autor Zhou, He, Hu, Jiang, Khatri, Sunil P., Liu, Frank

    Vydáno: ACM 01.06.2019
    “…* Theory of computation \rightarrow Data compression; Parallel algorithms; Sequential decision making; * Mathematics of computing \rightarrowBayesian computation;…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    RL-Fill: Timing-Aware Fill Insertion Using Reinforcement Learning Autor Cho, Jinoh, Park, Seonghyeon, Lee, Jakang, Lee, Sung-Yun, Ahn, Jinmo, Kang, Seokhyeong

    ISSN: 1558-2434
    Vydáno: ACM 27.10.2024
    “…We introduce RL-Fill, a novel reinforcement learning framework for timing-aware fill insertion…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    Robust Implementation of Retrieval-Augmented Generation on Edge-Based Computing-in-Memory Architectures Autor Qin, Ruiyang, Yan, Zheyu, Zeng, Dewen, Jia, Zhenge, Liu, Dancheng, Liu, Jianbo, Abbasi, Ahmed, Zheng, Zhi, Cao, Ningyuan, Ni, Kai, Xiong, Jinjun, Shi, Yiyu

    ISSN: 1558-2434
    Vydáno: ACM 27.10.2024
    “… Although such learning methods can be optimized to reduce resource utilization, the overall required resources remain a heavy burden on edge devices…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    Laminar 2.0: Serverless Stream Processing with Enhanced Code Search and Recommendations Autor Rotchford, Daniel, Evans, Samuel, Filgueira, Rosa

    Vydáno: IEEE 17.11.2024
    “… Building on Laminar 1.0, this version introduces improved dependency management, client-server functionality, and advanced deep learning models for semantic search…”
    Získat plný text
    Konferenční příspěvek
  20. 20