Výsledky vyhledávání - Theory of computation → Dynamic graph algorithms

Upřesnit hledání
  1. 1

    Skywalker: Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs Autor Wang, Pengyu, Li, Chao, Wang, Jing, Wang, Taolei, Zhang, Lu, Leng, Jingwen, Chen, Quan, Guo, Minyi

    Vydáno: IEEE 01.09.2021
    “…Graph sampling and random walk operations, capturing the structural properties of graphs, are playing an important role today as we cannot directly adopt computing-intensive algorithms on large-scale graphs…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    ParGNN: A Scalable Graph Neural Network Training Framework on multi-GPUs Autor Gu, Junyu, Li, Shunde, Cao, Rongqiang, Wang, Jue, Wang, Zijian, Liang, Zhiqiang, Liu, Fang, Li, Shigang, Zhou, Chunbao, Wang, Yangang, Chi, Xuebin

    Vydáno: IEEE 22.06.2025
    “… over-partition to alleviate load imbalance. Based on the over-partition results, we present a subgraph pipeline algorithm to overlap communication and computation while maintaining the accuracy of GNN training…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    BlasPart: A Deterministic Parallel Partitioner for Balanced Large-Scale Hypergraph Partitioning Autor Tong, Shengbo, Pei, Chunyan, Yu, Wenjian

    Vydáno: IEEE 22.06.2025
    “… Thus, fast and high-quality deterministic partitioning algorithms are largely in demand…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    ACGraph: Accelerating Streaming Graph Processing via Dependence Hierarchy Autor Jiang, Zihan, Mao, Fubing, Guo, Yapu, Liu, Xu, Liu, Haikun, Liao, Xiaofei, Jin, Hai, Zhang, Wei

    Vydáno: IEEE 09.07.2023
    “…Streaming graph processing needs to timely evaluate continuous queries. Prior systems suffer from massive redundant computations due to the irregular order of processing vertices influenced by updates…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems Autor Song, Ruibing, Wu, Chunshu, Liu, Chuan, Li, Ang, Huang, Michael, Geng, Tony Tong

    Vydáno: IEEE 29.06.2024
    “… problems and have been adopted for traditional graph computation, such as max-cut. However, when performing complex Graph Learning (GL…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    DyGNN: Algorithm and Architecture Support of Dynamic Pruning for Graph Neural Networks Autor Chen, Cen, Li, Kenli, Zou, Xiaofeng, Li, Yangfan

    Vydáno: IEEE 05.12.2021
    “…Recently, graph neural networks (GNNs) have achieved great success for graph representation learning tasks…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    LearnGraph: A Learning-Based Architecture for Dynamic Graph Processing Autor Zhang, Lingling, Wu, Yijian, Jiang, Hong, Zhou, Ziyu, Lu, Tiancheng

    Vydáno: IEEE 22.06.2025
    “…Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    SumPA: Efficient Pattern-Centric Graph Mining with Pattern Abstraction Autor Gui, Chuangyi, Liao, Xiaofei, Zheng, Long, Yao, Pengcheng, Wang, Qinggang, Jin, Hai

    Vydáno: IEEE 01.09.2021
    “…Graph mining aims to explore interesting structural information of a graph. Pattern-centric systems typically transform a generic-purpose graph mining problem into a series of subgraph matching problems for high performance…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Parallelizing Maximal Clique Enumeration on GPUs Autor Almasri, Mohammad, Chang, Yen-Hsiang, Hajj, Izzat El, Nagi, Rakesh, Xiong, Jinjun, Hwu, Wen-mei

    Vydáno: IEEE 21.10.2023
    “…We present a GPU solution for exact maximal clique enumeration (MCE) that performs a search tree traversal following the Bron-Kerbosch algorithm…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    PIMGCN: A ReRAM-Based PIM Design for Graph Convolutional Network Acceleration Autor Yang, Tao, Li, Dongyue, Han, Yibo, Zhao, Yilong, Liu, Fangxin, Liang, Xiaoyao, He, Zhezhi, Jiang, Li

    Vydáno: IEEE 05.12.2021
    “…Graph Convolutional Network (GCN) is a promising but computing- and memory-intensive learning model…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    iG-kway: Incremental k-way Graph Partitioning on GPU Autor Lee, Wan Luan, Jiang, Shui, Lin, Dian-Lun, Chang, Che, Zhang, Boyang, Chung, Yi-Hua, Schlichtmann, Ulf, Ho, Tsung-Yi, Huang, Tsung-Wei

    Vydáno: IEEE 22.06.2025
    “…Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking support for incremental updates…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    GPart: A GNN-Enabled Multilevel Graph Partitioner Autor Chen, Magi, Wang, Ting-Chi

    Vydáno: IEEE 22.06.2025
    “…This paper introduces GPart, a scalable multilevel framework for graph partitioning that integrates GNN embeddings with efficient coarsening and refinement techniques…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    EMGraph: Fast Learning-Based Electromigration Analysis for Multi-Segment Interconnect Using Graph Convolution Networks Autor Jin, Wentian, Chen, Liang, Sadiqbatcha, Sheriff, Peng, Shaoyi, Tan, Sheldon X.-D.

    Vydáno: IEEE 05.12.2021
    “… VLSI multisegment interconnect trees can be naturally viewed as graphs. Based on this observation, we propose a new graph convolution network (GCN…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    Dynamic Allocation of Processor Cores to Graph Applications on Commodity Servers Autor Pons, Lucia, Sahuauillo, Julio, Jones, Timothy M.

    Vydáno: IEEE 21.10.2023
    “…Graph processing is increasingly adopted to solve problems that span many application domains, including scientific computing, social networks, and big-data analytics…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Anchor First, Accelerate Next: Revolutionizing GNNs with PIM by Harnessing Stationary Data Autor Chen, Jiaxian, Qi, Yuxuan, Zhu, Yongbiao, Yuan, Jianan, Sun, Kaoyi, Wang, Tianyu, Ma, Chenlin, Wang, Yi

    Vydáno: IEEE 22.06.2025
    “…Substantial data movement caused by irregular graph topologies hinders the efficient processing of graph neural networks (GNNs…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    SGIRR: Sparse Graph Index Remapping for ReRAM Crossbar Operation Unit and Power Optimization Autor Wang, Cheng-Yuan, Chang, Yao-Wen, Chang, Yuan-Hao

    ISSN: 1558-2434
    Vydáno: ACM 29.10.2022
    “…Resistive Random Access Memory (ReRAM) Crossbars are a promising process-in-memory technology to reduce enormous data movement overheads of large-scale graph processing between computation and memory units…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    PSMiner: A Pattern-Aware Accelerator for High-Performance Streaming Graph Pattern Mining Autor Qi, Hao, Zhang, Yu, He, Ligang, Luo, Kang, Huang, Jun, Lu, Haoyu, Zhao, Jin, Jin, Hai

    Vydáno: IEEE 09.07.2023
    “…Streaming Graph Pattern Mining (GPM) has been widely used in many application fields…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    A Synchronization-Avoiding Distance-1 Grundy Coloring Algorithm for Power-Law Graphs Autor Firoz, Jesun Sahariar, Zalewski, Marcin, Lumsdaine, Andrew

    ISSN: 2641-7936
    Vydáno: IEEE 01.09.2019
    “… We implement our DC coloring algorithm and the well-known Jones-Plassmann algorithm and compare their performance with 4 different types of standard RMAT graphs and real-world graphs…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    SAGA: A Memory-Efficient Accelerator for GANN Construction via Harnessing Vertex Similarity Autor Chen, Ruiyang, Liu, Xueyuan, Qi, Chunyu, Yao, Yuanzheng, Sun, Yanan, Liang, Xiaoyao, Song, Zhuoran

    Vydáno: IEEE 22.06.2025
    “… Although architectures like NDSearch have been proposed to accelerate GANN search, they are hard to deploy for GANN construction, as their pre-processing methods introduce massive overhead in dynamic graphs…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    PairGraph: An Efficient Search-space-aware Accelerator for High-performance Concurrent Pairwise Queries Autor Fu, Yutao, Long, Zhongtian, Zhang, Yu, He, Zirui, Zhao, Jin, Niu, Qiyuan, Wang, Zixiao, Jin, Hai

    Vydáno: IEEE 22.06.2025
    “…) because of the poor temporal and spatial locality of traversal overlaps (i.e., graph structure data traversed by several queries…”
    Získat plný text
    Konferenční příspěvek