Výsledky vyhledávání - Sparse Convolutional Denoising Autoencoder (SCDA)

  • Zobrazuji výsledky 1 - 4 z 4
Upřesnit hledání
  1. 1

    TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition Autor Bodapati, Jyostna Devi, Balaji, Bharadwaj Bagepalli

    ISSN: 1573-7721, 1380-7501, 1573-7721
    Vydáno: New York Springer US 01.03.2024
    Vydáno v Multimedia tools and applications (01.03.2024)
    “…) images suitable for effective tumor recognition. The proposed model employs a Sparse Convolutional Denoising Autoencoder (SCDA…”
    Získat plný text
    Journal Article
  2. 2

    Sparse Convolutional Denoising Autoencoders for Genotype Imputation Autor Chen, Junjie, Shi, Xinghua

    ISSN: 2073-4425, 2073-4425
    Vydáno: Switzerland MDPI AG 28.08.2019
    Vydáno v Genes (28.08.2019)
    “… To explore the performance of deep learning for genotype imputation, in this study, we propose a deep model called a sparse convolutional denoising autoencoder (SCDA…”
    Získat plný text
    Journal Article
  3. 3

    An autoencoder-based deep learning method for genotype imputation Autor Song, Meng, Greenbaum, Jonathan, Luttrell, Joseph, Zhou, Weihua, Wu, Chong, Luo, Zhe, Qiu, Chuan, Zhao, Lan Juan, Su, Kuan-Jui, Tian, Qing, Shen, Hui, Hong, Huixiao, Gong, Ping, Shi, Xinghua, Deng, Hong-Wen, Zhang, Chaoyang

    ISSN: 2624-8212, 2624-8212
    Vydáno: Frontiers Media S.A 03.11.2022
    Vydáno v Frontiers in artificial intelligence (03.11.2022)
    “… In recent years, deep learning (DL) based methods, such as sparse convolutional denoising autoencoder (SCDA…”
    Získat plný text
    Journal Article
  4. 4

    Deep learning for prognostics and health management: State of the art, challenges, and opportunities Autor Rezaeianjouybari, Behnoush, Shang, Yi

    ISSN: 0263-2241, 1873-412X
    Vydáno: London Elsevier Ltd 15.10.2020
    “…•The state-of-the-art deep models in PHM applications have been overviewed.•The models are classified into generative, discriminative and hybrid…”
    Získat plný text
    Journal Article