Výsledky vyhledávání - Physics-informed greedy algorithm

  • Zobrazuji výsledky 1 - 20 z 20
Upřesnit hledání
  1. 1

    gLaSDI: Parametric physics-informed greedy latent space dynamics identification Autor He, Xiaolong, Choi, Youngsoo, Fries, William D., Belof, Jonathan L., Chen, Jiun-Shyan

    ISSN: 0021-9991, 1090-2716
    Vydáno: United States Elsevier Inc 15.09.2023
    Vydáno v Journal of computational physics (15.09.2023)
    “… reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual…”
    Získat plný text
    Journal Article
  2. 2

    Greedy Algorithms for Physics-Informed Sparse Sensor Selection Autor Clark, Emily E

    ISBN: 9798684637322
    Vydáno: ProQuest Dissertations & Theses 01.01.2020
    “… Instead, researchers have developed techniques to calculate near-optimal sensor placements, usually based on convex relaxations or greedy algorithms…”
    Získat plný text
    Dissertation
  3. 3

    gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification Autor He, Xiaolong, Choi, Youngsoo, Fries, William D, Belof, Jon, Chen, Jiun-Shyan

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 18.05.2023
    Vydáno v arXiv.org (18.05.2023)
    “… reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual…”
    Získat plný text
    Paper
  4. 4

    Physics-informed CoKriging: A Gaussian-process-regression-based multifidelity method for data-model convergence Autor Yang, Xiu, Barajas-Solano, David, Tartakovsky, Guzel, Tartakovsky, Alexandre M.

    ISSN: 0021-9991, 1090-2716
    Vydáno: Cambridge Elsevier Inc 15.10.2019
    Vydáno v Journal of computational physics (15.10.2019)
    “…: physics-informed CoKriging (CoPhIK). In CoKriging-based multifidelity methods, the quantities of interest are modeled as linear combinations of multiple parameterized stationary Gaussian processes (GPs…”
    Získat plný text
    Journal Article
  5. 5

    Certified data-driven physics-informed greedy auto-encoder simulator Autor He, Xiaolong, Choi, Youngsoo, Fries, William D, Belof, Jonathan L, Chen, Jiun-Shyan

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 24.11.2022
    Vydáno v arXiv.org (24.11.2022)
    “… To effectively explore the parameter space for optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed error indicator is introduced to search for optimal…”
    Získat plný text
    Paper
  6. 6

    An algorithm for physics informed scan path optimization in additive manufacturing Autor Stump, B.

    ISSN: 0927-0256, 1879-0801
    Vydáno: United States Elsevier B.V 01.09.2022
    Vydáno v Computational materials science (01.09.2022)
    “…•Generator algorithm for creating a variety of scan paths.•Results show ability for fine control of site-specific microstructure…”
    Získat plný text
    Journal Article
  7. 7

    Generative point sampling strategies for physics-informed neural networks Autor Kochliaridis, Vasileios, Dilmperis, Ioannis, Palaskos, Achilleas, Vlahavas, Ioannis

    ISSN: 0177-0667, 1435-5663
    Vydáno: London Springer London 01.10.2025
    Vydáno v Engineering with computers (01.10.2025)
    “…Physics-Informed Neural Networks (PINNs) have been a groundbreaking approach for solving complex boundary-value systems using Neural Networks…”
    Získat plný text
    Journal Article
  8. 8

    Physics-Aware Neural Networks for Distribution System State Estimation Autor Zamzam, Ahmed Samir, Sidiropoulos, Nicholas D.

    ISSN: 0885-8950, 1558-0679
    Vydáno: New York IEEE 01.11.2020
    Vydáno v IEEE transactions on power systems (01.11.2020)
    “…The distribution system state estimation problem seeks to determine the network state from available measurements. Widely used Gauss-Newton approaches are very…”
    Získat plný text
    Journal Article
  9. 9

    Thermodynamically Consistent Physics-Informed Data-Driven Computing and Reduced-Order Modeling of Nonlinear Materials Autor He, Xiaolong

    ISBN: 9798351426983
    Vydáno: ProQuest Dissertations & Theses 01.01.2022
    “…Physical simulations have influenced the advancements in engineering, technology, and science more rapidly than ever before. However, it remains challenging…”
    Získat plný text
    Dissertation
  10. 10

    Gauss Newton Method for Solving Variational Problems of PDEs with Neural Network Discretizaitons Autor Hao, Wenrui, Hong, Qingguo, Jin, Xianlin

    ISSN: 0885-7474, 1573-7691
    Vydáno: New York Springer US 01.07.2024
    Vydáno v Journal of scientific computing (01.07.2024)
    “… Various approaches, such as the deep Ritz method and physics-informed neural networks, have been developed for numerical solutions…”
    Získat plný text
    Journal Article
  11. 11

    Physics-informed data-driven Bayesian network for the risk analysis of hydrogen refueling stations Autor Xing, Jinduo, Qian, Jiaqi, Peng, Rui, Zio, Enrico

    ISSN: 0360-3199
    Vydáno: Elsevier Ltd 18.03.2024
    “…The safety of hydrogen refueling stations (HRSs) is receiving increasing attention with the growth use of hydrogen energy. Existing risk assessment methods of…”
    Získat plný text
    Journal Article
  12. 12

    GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs Autor Chen, Yanlai, Koohy, Shawn

    ISSN: 0168-874X, 1872-6925
    Vydáno: Elsevier B.V 01.01.2024
    “…Physics-Informed Neural Network (PINN) has proven itself a powerful tool to obtain the numerical solutions of nonlinear partial differential equations (PDEs…”
    Získat plný text
    Journal Article
  13. 13

    POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier–Stokes equations Autor Hijazi, Saddam, Freitag, Melina, Landwehr, Niels

    ISSN: 2213-7467, 2213-7467
    Vydáno: Cham Springer International Publishing 18.03.2023
    “…We present a Reduced Order Model (ROM) which exploits recent developments in Physics Informed Neural Networks (PINNs…”
    Získat plný text
    Journal Article
  14. 14

    Physics-Informed Graph Capsule Generative Autoencoder for Probabilistic AC Optimal Power Flow Autor Saffari, Mohsen, Khodayar, Mahdi, Khodayar, Mohammad E.

    ISSN: 2471-285X, 2471-285X
    Vydáno: IEEE 01.10.2024
    “…Due to the increasing demand for electricity and the inherent uncertainty in power generation, finding efficient solutions to the stochastic alternating…”
    Získat plný text
    Journal Article
  15. 15

    Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence Autor Yang, Xiu, Barajas-Solano, David, Tartakovsky, Guzel, Tartakovsky, Alexandre

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 24.11.2018
    Vydáno v arXiv.org (24.11.2018)
    “…: physics-informed CoKriging (CoPhIK). In CoKriging-based multifidelity methods, the quantities of interest are modeled as linear combinations of multiple parameterized stationary Gaussian processes (GPs…”
    Získat plný text
    Paper
  16. 16

    Greedy training algorithms for neural networks and applications to PDEs Autor Siegel, Jonathan W., Hong, Qingguo, Jin, Xianlin, Hao, Wenrui, Xu, Jinchao

    ISSN: 0021-9991, 1090-2716
    Vydáno: Elsevier Inc 01.07.2023
    Vydáno v Journal of computational physics (01.07.2023)
    “… It is our goal in this work to take a step toward remedying this. For this purpose, we develop a novel greedy training algorithm for shallow neural networks…”
    Získat plný text
    Journal Article
  17. 17

    Gauss Newton method for solving variational problems of PDEs with neural network discretizaitons Autor Hao, Wenrui, Hong, Qingguo, Jin, Xianlin

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 21.01.2024
    Vydáno v arXiv.org (21.01.2024)
    “… Various approaches, such as the deep Ritz method and physics-informed neural networks, have been developed for numerical solutions…”
    Získat plný text
    Paper
  18. 18

    Greedy Training Algorithms for Neural Networks and Applications to PDEs Autor Siegel, Jonathan W, Hong, Qingguo, Jin, Xianlin, Hao, Wenrui, Xu, Jinchao

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 24.03.2023
    Vydáno v arXiv.org (24.03.2023)
    “… It is our goal in this work to take a step toward remedying this. For this purpose, we develop a novel greedy training algorithm for shallow neural networks…”
    Získat plný text
    Paper
  19. 19

    GS-PINN: Greedy Sampling for Parameter Estimation in Partial Differential Equations Autor ootani, Ali, Kapadia, Harshit, Chellappa, Sridhar, Goyal, Pawan, Benner, Peter

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 14.05.2024
    Vydáno v arXiv.org (14.05.2024)
    “… equation to estimate its parameters. Greedy samples are used to train a physics-informed neural network architecture which maps the nonlinear relation between spatio-temporal data and the measured values…”
    Získat plný text
    Paper
  20. 20

    Online sequential decision making of multi-stage assembly process parameters based on deep reinforcement learning and its application in diesel engine production Autor Song, Yi-Tian, Sun, Yan-Ning, Liu, Li-Lan, Wu, Jie, Gao, Zeng-Gui, Qin, Wei

    ISSN: 0278-6125
    Vydáno: Elsevier Ltd 01.10.2025
    Vydáno v Journal of manufacturing systems (01.10.2025)
    “…Maintaining fixed parameters during batch assembly of complex mechanical products often results in quality inconsistencies due to time-varying operational…”
    Získat plný text
    Journal Article