Výsledky vyhledávání - Multi-modal graph autoencoder

  1. 1

    ZMGA: A ZINB-based multi-modal graph autoencoder enhancing topological consistency in single-cell clustering Autor Yao, Jiaxi, Li, Lin, Xu, Tong, Sun, Yang, Jing, Hongwei, Wang, Chengyuan

    ISSN: 1746-8094
    Vydáno: Elsevier Ltd 01.11.2024
    “… To address these challenges, we introduce a topologically consistent multi-modal graph autoencoder…”
    Získat plný text
    Journal Article
  2. 2

    SDC-GAE: Structural Difference Compensation Graph Autoencoder for Unsupervised Multimodal Change Detection Autor Han, Te, Tang, Yuqi, Chen, Yuzeng, Yang, Xin, Guo, Yuqiang, Jiang, Shujing

    ISSN: 0196-2892, 1558-0644
    Vydáno: New York IEEE 2024
    “… SDC-GAE utilizes a graph convolutional network (GCN) to extract deep structural features from multimodal images…”
    Získat plný text
    Journal Article
  3. 3

    Hybrid Graph Convolutional Network With Online Masked Autoencoder for Robust Multimodal Cancer Survival Prediction Autor Hou, Wentai, Lin, Chengxuan, Yu, Lequan, Qin, Jing, Yu, Rongshan, Wang, Liansheng

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Vydáno: United States IEEE 01.08.2023
    Vydáno v IEEE transactions on medical imaging (01.08.2023)
    “… This manuscript proposes a novel hybrid graph convolutional network, entitled HGCN, which is equipped with an online masked autoencoder paradigm for robust multimodal cancer survival prediction…”
    Získat plný text
    Journal Article
  4. 4

    Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder Autor Jiang, Junhao, Zuo, Yi, Li, Zhiyuan

    ISSN: 0951-8320
    Vydáno: Elsevier Ltd 01.03.2026
    “… of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN…”
    Získat plný text
    Journal Article
  5. 5

    Graph2MDA: a multi-modal variational graph embedding model for predicting microbe–drug associations Autor Deng, Lei, Huang, Yibiao, Liu, Xuejun, Liu, Hui

    ISSN: 1367-4803, 1367-4811, 1460-2059, 1367-4811
    Vydáno: England Oxford University Press 27.01.2022
    Vydáno v Bioinformatics (27.01.2022)
    “…–drug associations by using variational graph autoencoder (VGAE). We constructed multi-modal attributed graphs based on multiple features of microbes and drugs, such as molecular…”
    Získat plný text
    Journal Article
  6. 6

    Variational graph autoencoder-driven balancing strategy for multimodal multi-objective optimization Autor Yang, Lei, Zhang, Erlei, Dang, Qianlong

    ISSN: 0020-0255
    Vydáno: Elsevier Inc 01.09.2025
    Vydáno v Information sciences (01.09.2025)
    “… Therefore, this paper proposes a multimodal multi-objective evolutionary algorithm driven by variational graph autoencoder (VGAE…”
    Získat plný text
    Journal Article
  7. 7

    MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder Autor Deng, Zengqian, Xu, Jie, Feng, Yinfei, Dong, Liangcheng, Zhang, Yuanyuan

    ISSN: 1025-5842, 1476-8259, 1476-8259
    Vydáno: England Taylor & Francis 19.05.2025
    “…Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees…”
    Získat plný text
    Journal Article
  8. 8

    Radiation therapy response prediction for head and neck cancer using multimodal imaging and multiview dynamic graph autoencoder feature selection Autor Moslemi, Amir, Osapoetra, Laurentius Oscar, Safakish, Aryan, Sannachi, Lakshmanan, Alberico, David, Czarnota, Gregory J

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Vydáno: United States 01.10.2025
    Vydáno v Medical physics (Lancaster) (01.10.2025)
    “…Background External beam radiation therapy is a common treatment for head and neck (H&N) cancers. Radiomic features derived from biomedical images have shown…”
    Získat plný text
    Journal Article
  9. 9

    SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival Autor Pan, Liangrui, Peng, Yijun, Li, Yan, Wang, Xiang, Liu, Wenjuan, Xu, Liwen, Liang, Qingchun, Peng, Shaoliang

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Vydáno: United States Elsevier Ltd 01.04.2024
    Vydáno v Computers in biology and medicine (01.04.2024)
    “… This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival…”
    Získat plný text
    Journal Article
  10. 10

    Relation Learning on Social Networks with Multi-Modal Graph Edge Variational Autoencoders Autor Yang, Carl, Zhang, Jieyu, Wang, Haonan, Li, Sha, Kim, Myungwan, Walker, Matt, Xiao, Yiou, Han, Jiawei

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 04.11.2019
    Vydáno v arXiv.org (04.11.2019)
    “… However, relations in social networks are often hard to profile, due to noisy multi-modal signals and limited user-generated ground-truth labels…”
    Získat plný text
    Paper
  11. 11

    Dual Mutual Information-Driven Multimodal Recommendation with Denoising Graph Autoencoder Autor Yang, Mengduo, Zhou, Jie, Xi, Meng, Pan, Xiaohua, Li, Ying, Wu, Yangyang, Zhang, Jinshan, Yin, Jianwei

    ISSN: 1945-788X
    Vydáno: IEEE 30.06.2025
    “… Such limitations ultimately harm the recommendation performance. To this end, we propose a Dual Mutual Information-Driven Multimodal Recommendation Model with Denoising Graph Autoencoder (DMIGA…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Spatially Aware Domain Adaptation Enables Cell Type Deconvolution from Multi-Modal Spatially Resolved Transcriptomics Autor Wang, Lequn, Bai, Xiaosheng, Zhang, Chuanchao, Shi, Qianqian, Chen, Luonan

    ISSN: 2366-9608, 2366-9608
    Vydáno: Germany 01.05.2025
    Vydáno v Small methods (01.05.2025)
    “… SpaDA utilizes a self-expressive variational autoencoder, coupled with deep spatial distribution alignment, to learn and align spatial and graph representations from spatial multi-modal SRT data…”
    Zjistit podrobnosti o přístupu
    Journal Article
  13. 13

    Design of an Iterative Method for Enhanced Multimodal Time Series Analysis Using Graph Attention Networks, Variational Graph Autoencoders, and Transfer Learning Autor Kamble, Vijaya, Bhargava, Sanjay

    ISSN: 1112-5209
    Vydáno: Paris Engineering and Scientific Research Groups 13.04.2024
    Vydáno v Journal of Electrical Systems (13.04.2024)
    “…In the ever-evolving landscape of data analysis, the need to efficiently and accurately interpret multimodal time series data has become paramount…”
    Získat plný text
    Journal Article
  14. 14

    Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks Autor Feng, Xiang, Fang, Fang, Long, Haixia, Zeng, Rao, Yao, Yuhua

    ISSN: 1664-8021, 1664-8021
    Vydáno: Switzerland Frontiers Media S.A 09.12.2022
    Vydáno v Frontiers in genetics (09.12.2022)
    “… In this study, we developed scGAEGAT, a multi-modal model with graph autoencoders and graph attention networks for scRNA-seq analysis based on graph neural networks…”
    Získat plný text
    Journal Article
  15. 15

    Fusion Learning of Multimodal Neuroimaging with Weighted Graph AutoEncoder Autor Shi, Gen, Zhu, Yifan, Zhang, Fuquan, Liu, Wenjin, Yao, Yuxiang, Li, Xuesong

    Vydáno: IEEE 06.12.2022
    “… Fusion of multimodal neuroimaging data is expected to provide more comprehensive characterization of brain diseases, given that the different modalities contain more complementary information…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Deep graph embedding learning based on multi-variational graph autoencoders for POI recommendation Autor Gong, Weihua, Shen, Genhang, Zhao, Anlun, Yang, Lianghuai, Cheng, Zhen

    ISSN: 1384-5810, 1573-756X
    Vydáno: New York Springer Nature B.V 01.07.2025
    Vydáno v Data mining and knowledge discovery (01.07.2025)
    “… To address this challenge, we propose a new unified heterogeneous graph embedding framework by leveraging multimodal variational graph autoencoders, called MultiVGAE…”
    Získat plný text
    Journal Article
  17. 17

    Multi-view representation model based on graph autoencoder Autor Li, Jingci, Lu, Guangquan, Wu, Zhengtian, Ling, Fuqing

    ISSN: 0020-0255, 1872-6291
    Vydáno: Elsevier Inc 01.06.2023
    Vydáno v Information sciences (01.06.2023)
    “… However, most existing graph representation learning ignores data's multi-modal features and takes the node features and graph structure features as one view…”
    Získat plný text
    Journal Article
  18. 18

    A graph-based semi-supervised approach to classification learning in digital geographies Autor Liu, Pengyuan, De Sabbata, Stefano

    ISSN: 0198-9715, 1873-7587
    Vydáno: Oxford Elsevier Ltd 01.03.2021
    “…As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday…”
    Získat plný text
    Journal Article
  19. 19

    Explicit semantic guided bi-incomplete multi-modal hashing with label co-occurrence and label graph constraints Autor Zhu, Haoran, Lu, Xu, Zhang, Liang, Liu, Li, Zhang, Huaxiang

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Vydáno: United States Elsevier Ltd 01.03.2026
    Vydáno v Neural networks (01.03.2026)
    “…•We propose LaDiff-BIMH, a novel bi-incomplete multi-modal hashing framework that simultaneously handles missing features and labels within a unified architecture…”
    Získat plný text
    Journal Article
  20. 20

    Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images Autor Li, Bingjun, Karami, Mostafa, Junayed, Masum Shah, Nabavi, Sheida

    ISSN: 2156-1133
    Vydáno: IEEE 03.12.2024
    “…Understanding the intricate cellular environment within biological tissues is crucial for uncovering insights into complex biological functions. While…”
    Získat plný text
    Konferenční příspěvek