Výsledky vyhledávání - Hardware Integrated circuits Reconfigurable logic and FPGAs Hardware accelerators

  1. 1

    Interview – Design: ‘An FPGA Is A Reconfigurable Integrated Circuit Used To Implement Complex Logic Functions’

    ISSN: 0013-516X
    Vydáno: New Delhi Athena Information Solutions Pvt. Ltd 01.09.2020
    Vydáno v Electronics for You (01.09.2020)
    Získat plný text
    Magazine Article
  2. 2
  3. 3
  4. 4
  5. 5

    Ambit: in-memory accelerator for bulk bitwise operations using commodity DRAM technology Autor Seshadri, Vivek, Lee, Donghyuk, Mullins, Thomas, Hassan, Hasan, Boroumand, Amirali, Kim, Jeremie, Kozuch, Michael A., Mutlu, Onur, Gibbons, Phillip B., Mowry, Todd C.

    ISBN: 1450349528, 9781450349529
    ISSN: 2379-3155
    Vydáno: New York, NY, USA ACM 14.10.2017
    “…, CPU, GPU, FPGA, processing-in-memory). To overcome this bottleneck, we propose Ambit, an Accelerator-in-Memory for bulk bitwise operations…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm Autor Kao, Sheng-Chun, Krishna, Tushar

    ISSN: 1558-2434
    Vydáno: Association on Computer Machinery 02.11.2020
    “…DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    ANT: Exploiting Adaptive Numerical Data Type for Low-bit Deep Neural Network Quantization Autor Guo, Cong, Zhang, Chen, Leng, Jingwen, Liu, Zihan, Yang, Fan, Liu, Yunxin, Guo, Minyi, Zhu, Yuhao

    Vydáno: IEEE 01.10.2022
    “… Even though this line of work brings algorithmic benefits, it also introduces significant hardware overheads due to variable-length encoding…”
    Získat plný text
    Konferenční příspěvek
  8. 8
  9. 9
  10. 10

    NAAS: Neural Accelerator Architecture Search Autor Lin, Yujun, Yang, Mengtian, Han, Song

    Vydáno: IEEE 05.12.2021
    “…Data-driven, automatic design space exploration of neural accelerator architecture is desirable for specialization and productivity…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks Autor Boroumand, Amirali, Ghose, Saugata, Akin, Berkin, Narayanaswami, Ravi, Oliveira, Geraldo F., Ma, Xiaoyu, Shiu, Eric, Mutlu, Onur

    Vydáno: IEEE 01.09.2021
    “…Emerging edge computing platforms often contain machine learning (ML) accelerators that can accelerate inference for a wide range of neural network (NN) models…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks Autor Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, Jason Cong

    ISSN: 1558-2434
    Vydáno: ACM 01.11.2016
    “… In this paper we design and implement Caffeine, a hardware/software co-designed library to efficiently accelerate the entire CNN on FPGAs…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    CrossLight: A Cross-Layer Optimized Silicon Photonic Neural Network Accelerator Autor Sunny, Febin, Mirza, Asif, Nikdast, Mahdi, Pasricha, Sudeep

    Vydáno: IEEE 05.12.2021
    “…Domain-specific neural network accelerators have seen growing interest in recent years due to their improved energy efficiency and performance compared to CPUs and GPUs…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation Autor Hong, Seongmin, Moon, Seungjae, Kim, Junsoo, Lee, Sungjae, Kim, Minsub, Lee, Dongsoo, Kim, Joo-Young

    Vydáno: IEEE 01.10.2022
    “… to its sequential characteristic. Therefore, an efficient hardware platform is required to address the high…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    PolySA: Polyhedral-Based Systolic Array Auto-Compilation Autor Cong, Jason, Wang, Jie

    ISSN: 1558-2434
    Vydáno: ACM 01.11.2018
    “…Automatic systolic array generation has long been an interesting topic due to the need to reduce the lengthy development cycles of manual designs. Existing…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Laconic Deep Learning Inference Acceleration Autor Sharify, Sayeh, Lascorz, Alberto Delmas, Mahmoud, Mostafa, Nikolic, Milos, Siu, Kevin, Stuart, Dylan Malone, Poulos, Zissis, Moshovos, Andreas

    ISSN: 2575-713X
    Vydáno: ACM 01.06.2019
    “…). This method produces numerically identical results and does not affect overall accuracy. We present Laconic, a hardware accelerator that implements this approach to boost energy efficiency for inference with Deep Learning Networks…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    DeepStrike: Remotely-Guided Fault Injection Attacks on DNN Accelerator in Cloud-FPGA Autor Luo, Yukui, Gongye, Cheng, Fei, Yunsi, Xu, Xiaolin

    Vydáno: IEEE 05.12.2021
    “…), such virtualization environments have posed many new security issues. This work investigates the integrity of DNN FPGA accelerators in clouds…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    SODA: Stencil with Optimized Dataflow Architecture Autor Chi, Yuze, Cong, Jason, Wei, Peng, Zhou, Peipei

    ISSN: 1558-2434
    Vydáno: ACM 01.11.2018
    “… Such kernels are often offloaded to FPGAs to take advantages of the efficiency of dedicated hardware…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    DSPlacer: DSP Placement for FPGA-based CNN Accelerator Autor Xie, Baohui, Zhu, Xinrui, Lu, Zhiyuan, Pu, Yuan, Wu, Tongkai, Zou, Xiaofeng, Yu, Bei, Chen, Tinghuan

    Vydáno: IEEE 22.06.2025
    “…Deploying convolutional neural networks (CNNs) on hardware platforms like Field Programmable Gate Arrays (FPGAs…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    High-Performance FPGA-based Accelerator for Bayesian Neural Networks Autor Fan, Hongxiang, Ferianc, Martin, Rodrigues, Miguel, Zhou, Hongyu, Niu, Xinyu, Luk, Wayne

    Vydáno: IEEE 05.12.2021
    “… This work proposes a novel FPGA based hardware architecture to accelerate BNNs inferred through Monte Carlo Dropout…”
    Získat plný text
    Konferenční příspěvek