Výsledky vyhledávání - Dynamic graph convolutional autoencoder
-
1
Dynamic graph convolutional autoencoder with node-attribute-wise attention for kidney and tumor segmentation from CT volumes
ISSN: 0950-7051, 1872-7409Vydáno: Amsterdam Elsevier B.V 25.01.2022Vydáno v Knowledge-based systems (25.01.2022)“… We propose a novel dynamic graph convolution (DGC) autoencoder with node-attribute-wise attention (NodeAttri-Attention…”
Získat plný text
Journal Article -
2
Drug-target interaction prediction based on graph convolutional autoencoder with dynamic weighting residual GCN
ISSN: 1471-2105, 1471-2105Vydáno: London BioMed Central 29.07.2025Vydáno v BMC bioinformatics (29.07.2025)“… of network’s representation capabilities. Results In this paper, we propose a graph convolutional autoencoder model, named DDGAE, for DTIs prediction…”
Získat plný text
Journal Article -
3
Dynamic graph convolutional autoencoder with node-attribute-wise attention for kidney and tumor segmentation from CT volumes
ISSN: 0950-7051Vydáno: Elsevier BV 01.01.2022Vydáno v Knowledge-Based Systems (01.01.2022)Získat plný text
Journal Article -
4
GDGC-AE: A New Approach to Mechanical Anomaly Detection Based on Graph Convolutional Networks and Autoencoders
Vydáno: IEEE 31.10.2024Vydáno v 2024 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD) (31.10.2024)“… In this paper, a global dynamic graph convolutional autoencoder (GDGC-AE) model based on Chebyshev convolution is proposed to cope with the above problems…”
Získat plný text
Konferenční příspěvek -
5
Seismic damage identification by graph convolutional autoencoder using adjacency matrix based on structural modes
ISSN: 0098-8847, 1096-9845Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.02.2024Vydáno v Earthquake engineering & structural dynamics (01.02.2024)“…‐time damage identification by a graph convolutional autoencoder (GCAE) based on seismic responses of the structural system…”
Získat plný text
Journal Article -
6
Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning
ISSN: 1476-9271, 1476-928X, 1476-928XVydáno: England Elsevier Ltd 01.12.2025Vydáno v Computational biology and chemistry (01.12.2025)“… MVGCVAE is the first model to synergistically integrate multi-view graph convolutional networks (GCNs…”
Získat plný text
Journal Article -
7
Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series
ISSN: 2666-5468, 2666-5468Vydáno: Elsevier Ltd 01.05.2022Vydáno v Energy and AI (01.05.2022)“… We introduce a promising neural architecture, namely a Graph Convolutional Autoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph…”
Získat plný text
Journal Article -
8
A Novel Unsupervised Structural Damage Detection Method Based on TCN-GAT Autoencoder
ISSN: 1424-8220, 1424-8220Vydáno: Switzerland MDPI AG 03.11.2025Vydáno v Sensors (Basel, Switzerland) (03.11.2025)“… This paper proposes an autoencoder model integrating Temporal Convolutional Networks (TCN) and Graph Attention Networks (GAT…”
Získat plný text
Journal Article -
9
Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics
ISSN: 0889-9746Vydáno: Elsevier Ltd 01.12.2024Vydáno v Journal of fluids and structures (01.12.2024)“… This work presents a geometric-deep-learning multi-mesh autoencoder framework to predict the spatial and temporal evolution of aerodynamic loads for a finite-span wing undergoing different types of motion…”
Získat plný text
Journal Article -
10
Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting
ISSN: 1949-3029, 1949-3037Vydáno: Piscataway IEEE 01.04.2020Vydáno v IEEE transactions on sustainable energy (01.04.2020)“… This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation…”
Získat plný text
Journal Article -
11
Predicting transonic flowfields in non–homogeneous unstructured grids using autoencoder graph convolutional networks
ISSN: 0021-9991Vydáno: Elsevier Inc 01.03.2025Vydáno v Journal of computational physics (01.03.2025)“… Our approach leverages geometric deep learning, specifically through the use of an autoencoder architecture built on graph convolutional networks…”
Získat plný text
Journal Article -
12
iCircDA-NEAE: Accelerated attribute network embedding and dynamic convolutional autoencoder for circRNA-disease associations prediction
ISSN: 1553-7358, 1553-734X, 1553-7358Vydáno: United States Public Library of Science 01.08.2023Vydáno v PLoS computational biology (01.08.2023)“…Accumulating evidence suggests that circRNAs play crucial roles in human diseases. CircRNA-disease association prediction is extremely helpful in understanding…”
Získat plný text
Journal Article -
13
AI-based clinical assessment of optic nerve head robustness superseding biomechanical testing
ISSN: 0007-1161, 1468-2079, 1468-2079Vydáno: BMA House, Tavistock Square, London, WC1H 9JR BMJ Publishing Group Ltd 01.02.2024Vydáno v British journal of ophthalmology (01.02.2024)“…Background/aimsTo use artificial intelligence (AI) to: (1) exploit biomechanical knowledge of the optic nerve head (ONH) from a relatively large population;…”
Získat plný text
Journal Article -
14
Graph convolutional multi-mesh autoencoder for steady transonic aircraft aerodynamics
ISSN: 2632-2153, 2632-2153Vydáno: Bristol IOP Publishing 01.06.2024Vydáno v Machine learning: science and technology (01.06.2024)“…Calculating aerodynamic loads around an aircraft using computational fluid dynamics…”
Získat plný text
Journal Article -
15
Graph autoencoder with mirror temporal convolutional networks for traffic anomaly detection
ISSN: 2045-2322, 2045-2322Vydáno: London Nature Publishing Group UK 13.01.2024Vydáno v Scientific reports (13.01.2024)“… In this paper, we propose a mirror temporal graph autoencoder (MTGAE) framework to explore anomalies and capture unseen nodes and the spatiotemporal correlation between nodes in the traffic network…”
Získat plný text
Journal Article -
16
Graph-informed convolutional autoencoder to classify brain responses during sleep
ISSN: 1662-453X, 1662-4548, 1662-453XVydáno: Switzerland Frontiers Media S.A 28.04.2025Vydáno v Frontiers in neuroscience (28.04.2025)“…Automated machine-learning algorithms that analyze biomedical signals have been used to identify sleep patterns and health issues. However, their performance…”
Získat plný text
Journal Article -
17
Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder
ISSN: 0951-8320Vydáno: Elsevier Ltd 01.03.2026Vydáno v Reliability engineering & system safety (01.03.2026)“… of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN…”
Získat plný text
Journal Article -
18
ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising
ISSN: 2156-7085, 2156-7085Vydáno: United States Optica Publishing Group 01.11.2022Vydáno v Biomedical optics express (01.11.2022)“… and a window-based graph attention convolutional network that combines static and dynamic attention modules to explore non-local self-similarity…”
Získat plný text
Journal Article -
19
Spatio-temporal graph convolutional autoencoder for transonic wing pressure distribution forecasting
ISSN: 1270-9638Vydáno: Elsevier Masson SAS 01.10.2025Vydáno v Aerospace science and technology (01.10.2025)“…This study presents a framework for predicting unsteady transonic wing pressure distributions due to pitch and plunge movement, integrating an autoencoder architecture with graph convolutional…”
Získat plný text
Journal Article -
20
PT-TDGCN: Pre-Trained Trend-Aware Dynamic Graph Convolutional Network for Traffic Flow Prediction
ISSN: 1424-8220, 1424-8220Vydáno: Switzerland MDPI AG 03.11.2025Vydáno v Sensors (Basel, Switzerland) (03.11.2025)“… To address these issues, we propose the Pre-trained Trend-aware Dynamic Graph Convolutional Network (PT-TDGCN…”
Získat plný text
Journal Article