Výsledky vyhledávání - Deep learning architectures and techniques; Segmentation

Upřesnit hledání
  1. 1

    Learning What Not to Segment: A New Perspective on Few-Shot Segmentation Autor Lang, Chunbo, Cheng, Gong, Tu, Binfei, Han, Junwei

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Recently few-shot segmentation (FSS) has been extensively developed. Most previous works strive to achieve generalization through the meta-learning framework derived from classification tasks…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    Segment, Magnify and Reiterate: Detecting Camouflaged Objects the Hard Way Autor Jia, Qi, Yao, Shuilian, Liu, Yu, Fan, Xin, Liu, Risheng, Luo, Zhongxuan

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…It is challenging to accurately detect camouflaged objects from their highly similar surroundings. Existing methods mainly leverage a single-stage detection…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images Autor Zorzi, Stefano, Bazrafkan, Shabab, Habenschuss, Stefan, Fraundorfer, Friedrich

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise vector polygons of extracted objects…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Deep orientation-aware functional maps: Tackling symmetry issues in Shape Matching Autor Donati, Nicolas, Corman, Etienne, Ovsjanikov, Maks

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “… Using this representation, we propose a new deep learning approach to learn orientation-aware features in afully unsupervised setting…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    BoxeR: Box-Attention for 2D and 3D Transformers Autor Nguyen, Duy-Kien, Ju, Jihong, Booij, Olaf, Oswald, Martin R., Snoek, Cees G. M.

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “… module, making it suitable for end-to-end instance detection and segmentation tasks. By learning invariance to rotation in the box-attention module, BoxeR-3D…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks Autor Bongratz, Fabian, Rickmann, Anne-Marie, Polsterl, Sebastian, Wachinger, Christian

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “… Although traditional and deep learning-based algorithmic pipelines exist for this purpose, they have two major drawbacks…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Generalizing Interactive Backpropagating Refinement for Dense Prediction Networks Autor Lin, Fanqing, Price, Brian, Martinez, Tony

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…As deep neural networks become the state-of-the-art approach in the field of computer vision for dense prediction tasks, many methods have been developed for automatic estimation of the target outputs…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Autor Zhang, Wenqiang, Huang, Zilong, Luo, Guozhong, Chen, Tao, Wang, Xinggang, Liu, Wenyu, Yu, Gang, Shen, Chunhua

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “… Experimental results demonstrate that our method significantly outperforms CNN- and ViT-based networks across several semantic segmentation datasets and achieves a good trade-off between accuracy and latency…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Image Segmentation Using Text and Image Prompts Autor Luddecke, Timo, Ecker, Alexander

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Image segmentation is usually addressed by training a model for a fixed set of object classes…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation Autor Guo, Xiaoqing, Liu, Jie, Liu, Tongliang, Yuan, Yixuan

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “… In this paper, we propose a simplex noise transition matrix (SimT) to model the mixed noise distributions in DA semantic segmentation and formulate the problem as estimation of SimT…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Vision Transformer with Deformable Attention Autor Xia, Zhuofan, Pan, Xuran, Song, Shiji, Li, Li Erran, Huang, Gao

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Transformers have recently shown superior performances on various vision tasks. The large, sometimes even global, receptive field endows Transformer models…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Deep Learning Architectures and Techniques for Multi-organ Segmentation Autor Ogrean, Valentin, Dorobantiu, Alexandru, Brad, Remus

    ISSN: 2158-107X, 2156-5570
    Vydáno: West Yorkshire Science and Information (SAI) Organization Limited 2021
    “…Deep learning architectures used for automatic multi-organ segmentation in the medical field have gained increased attention in the last years as the results and achievements outweighed the older techniques…”
    Získat plný text
    Journal Article
  13. 13

    Improvements in Forest Segmentation Accuracy Using a New Deep Learning Architecture and Data Augmentation Technique Autor He, Yan, Jia, Kebin, Wei, Zhihao

    ISSN: 2072-4292, 2072-4292
    Vydáno: Basel MDPI AG 01.05.2023
    Vydáno v Remote sensing (Basel, Switzerland) (01.05.2023)
    “… Accurate monitoring of forest cover is, therefore, essential. Image segmentation networks based on convolutional neural networks have shown significant advantages in remote sensing image analysis with the development of deep learning…”
    Získat plný text
    Journal Article
  14. 14

    Multi-Scale High-Resolution Vision Transformer for Semantic Segmentation Autor Gu, Jiaqi, Kwon, Hyoukjun, Wang, Dilin, Ye, Wei, Li, Meng, Chen, Yu-Hsin, Lai, Liangzhen, Chandra, Vikas, Pan, David Z.

    ISSN: 1063-6919
    Vydáno: IEEE 01.01.2022
    “… However, ViTs mainly designed for image classification will generate single-scale low-resolution representations, which makes dense prediction tasks such as semantic segmentation challenging for ViTs…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture Autor Shaukat, Zeeshan, Farooq, Qurat ul Ain, Tu, Shanshan, Xiao, Chuangbai, Ali, Saqib

    ISSN: 1471-2105, 1471-2105
    Vydáno: London BioMed Central 24.06.2022
    Vydáno v BMC bioinformatics (24.06.2022)
    “… Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning…”
    Získat plný text
    Journal Article
  16. 16
  17. 17

    Decoupled Multi-task Learning with Cyclical Self-Regulation for Face Parsing Autor Zheng, Qingping, Deng, Jiankang, Zhu, Zheng, Li, Ying, Zafeiriou, Stefanos

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…) produced by the existing state-of-the-art method in face parsing. To tackle these problems, we propose a novel Decoupled Multi-task Learning with Cyclical Self-Regulation (DML-CSR) for face parsing…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation Autor Phan, Minh Hieu, Ta, The-Anh, Phung, Son Lam, Tran-Thanh, Long, Bouzerdoum, Abdesselam

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    Dense Learning based Semi-Supervised Object Detection Autor Chen, Binghui, Li, Pengyu, Chen, Xiang, Wang, Biao, Zhang, Lei, Hua, Xian-Sheng

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “… applications anchor-free detectors are more demanded. In this paper, we intend to bridge this gap and propose a DenSe Learning (DSL…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    PLAD: Learning to Infer Shape Programs with Pseudo-Labels and Approximate Distributions Autor Jones, R. Kenny, Walke, Homer, Ritchie, Daniel

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…, and more. Training models to perform this task is complicated because paired (shape, program) data is not readily available for many domains, making exact supervised learning infeasible…”
    Získat plný text
    Konferenční příspěvek