Výsledky vyhledávání - Computing methodologies → Machine learning algorithms

Upřesnit hledání
  1. 1

    Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models Autor Sheng, Yi, Yang, Junhuan, Yang, Lei, Shi, Yiyu, Hu, Jingtong, Jiang, Weiwen

    Vydáno: United States IEEE 01.07.2023
    “…Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause…”
    Získat plný text
    Konferenční příspěvek Journal Article
  2. 2

    Toward Individual Fairness Testing with Data Validity Autor Kitamura, Takashi, Amasaki, Sousuke, Inoue, Jun, Isobe, Yoshinao, Toda, Takahisa

    ISSN: 2643-1572
    Vydáno: ACM 27.10.2024
    “…)". We develop a solid foundation of Ift-v and demonstrate the feasibility of Ift-v. Our preliminary evaluation with Ift-v reveals the possibility that many of discriminatory instances detected by state-of-the-art Ift algorithms are considered invalid…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    DARL: Distributed Reconfigurable Accelerator for Hyperdimensional Reinforcement Learning Autor Chen, Hanning, Issa, Mariam, Ni, Yang, Imani, Mohsen

    ISSN: 1558-2434
    Vydáno: ACM 29.10.2022
    “… Modern RL algorithms, i.e., Deep Q-Learning, are based on costly and resource hungry deep neural networks…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    A3C-S: Automated Agent Accelerator Co-Search towards Efficient Deep Reinforcement Learning Autor Fu, Yonggan, Zhang, Yongan, Li, Chaojian, Yu, Zhongzhi, Lin, Yingyan

    Vydáno: IEEE 05.12.2021
    “…Driven by the explosive interest in applying deep reinforcement learning (DRL) agents to numerous real-time control and decision-making applications…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    GARL: Genetic Algorithm-Augmented Reinforcement Learning to Detect Violations in Marker-Based Autonomous Landing Systems Autor Liang, Linfeng, Deng, Yao, Morton, Kye, Kallinen, Valtteri, James, Alice, Seth, Avishkar, Kuantama, Endrowednes, Mukhopadhyay, Subhas, Han, Richard, Zheng, Xi

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “… To address these issues, we introduce GARL, a framework combining a genetic algorithm (GA) and reinforcement learning (RL…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Cocktail: Learn a Better Neural Network Controller from Multiple Experts via Adaptive Mixing and Robust Distillation Autor Wang, Yixuan, Huang, Chao, Wang, Zhilu, Xu, Shichao, Wang, Zhaoran, Zhu, Qi

    Vydáno: IEEE 05.12.2021
    “…Neural networks are being increasingly applied to control and decision making for learning-enabled cyber-physical systems (LE-CPSs…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Lightning Talk: The New Era of Computational Cognitive Intelligence Autor Dutt, Nikil, Donyanavard, Bryan

    Vydáno: IEEE 09.07.2023
    “…), and the environment (e.g., context) renders ineffective the classical computational/algorithmic/numerical computing paradigm in dealing with the inherent runtime dynamism and uncertainty faced by emerging systems…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Making Fair ML Software using Trustworthy Explanation Autor Chakraborty, Joymallya, Peng, Kewen, Menzies, Tim

    ISSN: 2643-1572
    Vydáno: ACM 01.09.2020
    “…Machine learning software is being used in many applications (finance, hiring, admissions, criminal justice…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification Autor Wang, Junyao, Huang, Sitao, Imani, Mohsen

    Vydáno: IEEE 09.07.2023
    “… Many applications exploit machine learning methodology to dissect collected data, and edge computing was introduced to enhance the efficiency and scalability in resource-constrained computing environments…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    SpikeDyn: A Framework for Energy-Efficient Spiking Neural Networks with Continual and Unsupervised Learning Capabilities in Dynamic Environments Autor Putra, Rachmad Vidya Wicaksana, Shafique, Muhammad

    Vydáno: IEEE 05.12.2021
    “…Spiking Neural Networks (SNNs) bear the potential of efficient unsupervised and continual learning capabilities because of their biological plausibility, but their complexity still poses a serious research challenge to enable…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Llanimation: Llama Driven Gesture Animation Autor Windle, J, Matthews, I, Taylor, S

    ISSN: 0167-7055, 1467-8659
    Vydáno: Oxford Blackwell Publishing Ltd 01.12.2024
    Vydáno v Computer graphics forum (01.12.2024)
    “…Co‐speech gesturing is an important modality in conversation, providing context and social cues. In character animation, appropriate and synchronised gestures…”
    Získat plný text
    Journal Article
  12. 12

    FedLight: Federated Reinforcement Learning for Autonomous Multi-Intersection Traffic Signal Control Autor Ye, Yutong, Zhao, Wupan, Wei, Tongquan, Hu, Shiyan, Chen, Mingsong

    Vydáno: IEEE 05.12.2021
    “…Although Reinforcement Learning (RL) has been successfully applied in traffic control, it suffers from the problems of high average vehicle travel time and slow convergence to optimized solutions…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Iterative Generation of Adversarial Example for Deep Code Models Autor Huang, Li, Sun, Weifeng, Yan, Meng

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Deep code models are vulnerable to adversarial attacks, making it possible for semantically identical inputs to trigger different responses. Current black-box…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    RegHD: Robust and Efficient Regression in Hyper-Dimensional Learning System Autor Hernandez-Cano, Alejandro, Zhuo, Cheng, Yin, Xunzhao, Imani, Mohsen

    Vydáno: IEEE 05.12.2021
    “…Machine learning (ML) algorithms are key enablers to effectively assimilate and extract information from many generated data in the Internet of Things…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    FF-INT8: Efficient Forward-Forward DNN Training on Edge Devices with INT8 Precision Autor Ma, Jingxiao, Panda, Priyadarshini, Reda, Sherief

    Vydáno: IEEE 22.06.2025
    “… Recently, the Forward-Forward (FF) algorithm has emerged as a promising alternative to backpropagation, replacing the backward pass with an additional forward pass…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Fast Adversarial Training with Dynamic Batch-level Attack Control Autor Jung, Jaewon, Song, Jaeyong, Jang, Hongsun, Lee, Hyeyoon, Choi, Kanghyun, Park, Noseong, Lee, Jinho

    Vydáno: IEEE 09.07.2023
    “…Despite the fact that adversarial training provides an effective protection against adversarial attacks, it suffers from a huge computational overhead. To…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning Autor Fu, Yonggan, Yuan, Ye, Wu, Shang, Yuan, Jiayi, Lin, Yingyan Celine

    Vydáno: IEEE 09.07.2023
    “…Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations Autor Hundal, Rajdeep Singh, Xiao, Yan, Cao, Xiaochun, Dong, Jin Song, Rigger, Manuel

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    RESPECT: Reinforcement Learning based Edge Scheduling on Pipelined Coral Edge TPUs Autor Yin, Jiaqi, Li, Yingjie, Robinson, Daniel, Yu, Cunxi

    Vydáno: IEEE 09.07.2023
    “…, computation, I/O, and memory-bound) edge computing systems. While efficient execution of their computational graph requires an effective scheduling algorithm, generating the optimal scheduling solution is a challenging NP-hard problem…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    ADVeRL-ELF: ADVersarial ELF Malware Generation using Reinforcement Learning Autor Ravi, Akshara, Chaturvedi, Vivek, Shafique, Muhammad

    Vydáno: IEEE 22.06.2025
    “…Deep learning models are now pervasive in the malware detection domain owing to their high accuracy and performance efficiency…”
    Získat plný text
    Konferenční příspěvek