Výsledky vyhledávání - Gaussian clustering algorithm
Doporučená témata ve výsledcích tohoto hledání:
Doporučená témata ve výsledcích tohoto hledání:
- Artificial intelligence 2
- Computational intelligence 2
- Combinatorics 1
- Image processing 1
- Künstliche Intelligenz 1
- Management science 1
- Massendaten 1
- Neural networks (Computer science) 1
- Operations research 1
- Optical data processing 1
- Probabilities 1
- Signal processing 1
- Speech processing systems 1
- Technology & Engineering / Nanotechnology & MEMS 1
- Theoretische Chemie 1
-
1
Data science in chemistry : artificial intelligence, big data, chemometrics and quantum computing with Jupyter /
ISBN: 9783110629453Vydáno: Berlin ; Boston : De Gruyter, [2020]Obsah: “…51 Gaussian (ASE) --…”
E-kniha -
2
Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video
ISBN: 9783319755083ISSN: 2190-5053Vydáno: Cham : Springer International Publishing, 2018.Obsah: “…Introduction -- Background -- Proposed Learning Algorithms for Markov Clustering Topic Model -- Dynamic Hierarchical Dirlchlet Process -- Change Point Detection with Gaussian Processes -- Conclusions and Future Work.…”
Elektronický zdroj E-kniha -
3
Hybrid Intelligent Systems 17th International Conference on Hybrid Intelligent Systems (HIS 2017) held in Delhi, India, December 14-16, 2017 /
ISBN: 9783319763514ISSN: 2194-5357 ;Vydáno: Cham : Springer International Publishing, 2018.Obsah: “…Neural Tree for Estimating the Uniaxial Compressive Strength of Rock Materials -- Fault Tolerant Multiple Synchronized Parallel Load Balancing in Cloud -- Semi-Supervised Learning with the Integration of Fuzzy Clustering and Artificial Neural Network -- GMM-KNN: A Method for Processing Continuous k-NN Queries Based on The Gaussian Mixture Model -- Edge Detection for Cement Images Based on Interactive Genetic Algorithm -- A Fast Satellite Image Super-Resolution Technique Using Multicore Processing -- Use of Cellular Automata to Predict Deforestation in Queretaro -- A Classification Algorithm for Assessing the Quality Criteria for Business Process Models.…”
Elektronický zdroj E-kniha -
4
Computational Aspects and Applications in Large-Scale Networks NET 2017, Nizhny Novgorod, Russia, June 2017 /
ISBN: 9783319962474ISSN: 2194-1009 ;Vydáno: Cham : Springer International Publishing, 2018.Obsah: “…B: On forbidden Induced Subgraphs for the Class of Triangle-Konig Graphs -- Orlov, A: The Global Search Theory Approach to the Bilevel Pricing Problem in Telecommunication Networks -- Rubchinsky, A: Graph Dichotomy Algorithm and Its Applications to Analysis of Stocks Market -- Sokolova, A. and Savchenko, A: Cluster Analysis of Facial Video Data in Video Surveillance Systems Using Deep Learning -- Utkina, I: Using Modular Decomposition Technique to Solve the Maximum Clique Problem -- Part II: Network Models -- Koldanov, A. and Voronina, M: Robust Statistical Procedures for Testing Dynamics in Market Network -- Konnov, I: Application of Market Models to Network Equilibrium Problems -- Konnov, I. and Pinyagina, O: Selective Bi-coordinate Variations for Network Equilibrium Problems with Mixed Demand -- Makrushin, S: Developing a Model of Topological Structure Formation for Power Transmission Grids Based on the Analysis of the UNEG -- Nelyubin, A., Podinovski, V. and Potapov, M: Methods of Criteria Importance Theory and Their Software Implementation -- Ponomarenko, A., Utkina, I. and Batsyn, M: A Model of Optimal Network Structure for Decentralized Nearest Neighbor Search -- Semenov, A., Gorbatenko, D. and Kochemazov, S: Computational Study of Activation Dynamics on Networks of Arbitrary Structure -- Semenov, D. and Koldanov, P: Rejection Graph for Multiple Testing of Elliptical Model for Market Network -- Zaytsev, D. and Drozdova, D: Mapping Paradigms of Social Sciences: Application of Network Analysis -- Part III: Network Applications -- Belyaev, M., Dodonova, Y., Belyaeva, D., Krivov, E., Gutman, B., Faskowitz, J., Jahanshad, N. and Thompson, P: Using Geometry of the Set of Symmetric Positive Semidefinite Matrices to Classify Structural Brain Networks -- Grechikhin, I. and Kalyagin, V: Comparison of Statistical Procedures for Gaussian Graphical Model Selection -- Karpov, N., Lyashuk, A. and Vizgunov, A: Sentiment Analysis Using Deep Learning -- Koldanov, P: Invariance Properties of Statistical Procedures for Network Structures Identification -- Kurmukov, A., Dodonova, Y., Burova, M., Mussabayeva, A., Petrov, D., Faskowitz, J. and Zhukov, L: Topological Modules of Human Brain Networks are Anatomically Embedded: Evidence from Modularity Analysis at Multiple Scales -- Kostyakova, N., Karpov, I., Makarov, I. and Zhukov, L. …”
Elektronický zdroj E-kniha

