The Story of Proof : Logic and the History of Mathematics /

How the concept of proof has enabled the creation of mathematical knowledgeThe Story of Proof investigates the evolution of the concept of proof-one of the most significant and defining features of mathematical thought-through critical episodes in its history. From the Pythagorean theorem to modern...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Stillwell, John (Autor)
Médium: E-kniha
Jazyk:angličtina
Vydáno: Princeton, NJ : Princeton University Press, [2022]
Témata:
ISBN:9780691234373
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 DE-B1597
005 20230526131551.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 221201t20222022nju fo d z eng d
020 |a 9780691234373 
040 |a DE-B1597  |b eng  |c CVT  |e AACR2  |d CVT 
041 0 |a eng 
044 |a nju  |c US-NJ 
072 7 |a 51  |2 CVT 
080 |a 51  |2 2011 
080 |a 510.7  |2 2011 
100 1 |a Stillwell, John,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Story of Proof :  |b Logic and the History of Mathematics /  |c John Stillwell. 
260 1 |a Princeton, NJ :   |b Princeton University Press,   |c [2022] 
300 |a 1 online resource (456 p.) :  |b 98 color + 71 b/w illus. 
505 0 0 |t Frontmatter --   |t Contents --   |t Preface --   |t CHAPTER 1 Before Euclid --   |t CHAPTER 2 Euclid --   |t CHAPTER 3 After Euclid --   |t CHAPTER 4 Algebra --   |t CHAPTER 5 Algebraic Geometry --   |t CHAPTER 6 Calculus --   |t CHAPTER 7 Number Theory --   |t CHAPTER 8 The Fundamental Theorem of Algebra --   |t CHAPTER 9 Non-Euclidean Geometry --   |t CHAPTER 10 Topology --   |t CHAPTER 11 Arithmetization --   |t CHAPTER 12 Set Theory --   |t CHAPTER 13 Axioms for Numbers, Geometry, and Sets --   |t CHAPTER 14 The Axiom of Choice --   |t CHAPTER 15 Logic and Computation --   |t CHAPTER 16 Incompleteness --   |t Bibliography --   |t Index 
516 |a text file PDF 
520 |a How the concept of proof has enabled the creation of mathematical knowledgeThe Story of Proof investigates the evolution of the concept of proof-one of the most significant and defining features of mathematical thought-through critical episodes in its history. From the Pythagorean theorem to modern times, and across all major mathematical disciplines, John Stillwell demonstrates that proof is a mathematically vital concept, inspiring innovation and playing a critical role in generating knowledge.Stillwell begins with Euclid and his influence on the development of geometry and its methods of proof, followed by algebra, which began as a self-contained discipline but later came to rival geometry in its mathematical impact. In particular, the infinite processes of calculus were at first viewed as "infinitesimal algebra," and calculus became an arena for algebraic, computational proofs rather than axiomatic proofs in the style of Euclid. Stillwell proceeds to the areas of number theory, non-Euclidean geometry, topology, and logic, and peers into the deep chasm between natural number arithmetic and the real numbers. In its depths, Cantor, Gödel, Turing, and others found that the concept of proof is ultimately part of arithmetic. This startling fact imposes fundamental limits on what theorems can be proved and what problems can be solved.Shedding light on the workings of mathematics at its most fundamental levels, The Story of Proof offers a compelling new perspective on the field's power and progress. 
650 0 |a Proof theory  |x History. 
650 7 |a MATHEMATICS / History & Philosophy.  |2 bisacsh 
653 |a teória dôkazov 
653 |a matematika 
856 4 0 |u https://erproxy.cvtisr.sk/sfx/access?url=www.degruyter.com/document/isbn/9780691234373/html  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE13363 
919 |a 978-0-691-23437-3 
959 |a 08 
992 |a SUD 
999 |c 300482  |d 300482 
974 |b Rita Zubonyaiová