The Periodic Unfolding Method Theory and Applications to Partial Differential Problems /

This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Cioranescu, Doina (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Singapore : Springer Singapore , 2018.
Vydání:1st ed. 2018.
Edice:Series in Contemporary Mathematics, 3
Témata:
ISBN:9789811330322
ISSN:2364-009X ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618121204.0
007 cr nn 008mamaa
008 181103s2018 si | s |||| 0|eng d
020 |a 9789811330322 
024 7 |a 10.1007/978-981-13-3032-2  |2 doi 
035 |a CVTIDW12563 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Cioranescu, Doina.  |4 aut 
245 1 4 |a The Periodic Unfolding Method   |h [electronic resource] :  |b Theory and Applications to Partial Differential Problems /  |c by Doina Cioranescu, Alain Damlamian, Georges Griso. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a XVI, 518 p. 1 illus.  |b online resource. 
490 1 |a Series in Contemporary Mathematics,  |x 2364-009X ;  |v 3 
500 |a Mathematics and Statistics  
505 0 |a Unfolding operators in fixed domains -- Advanced topics for unfolding -- Homogenization in fixed domains -- Unfolding operators in perforated domains -- Homogenization in perforated domains -- A Stokes problem in a partially porous medium -- Partial unfolding: a brief primer -- Oscillating boundaries -- Unfolding operators: the case of "small holes" -- Homogenization in domains with "small holes" -- Homogenization of an elastic thin plate -- The scale-splitting operators revisited -- * Strongly oscillating nonhomogeneous Dirichlet condition -- Some sharp error estimates. 
516 |a text file PDF 
520 |a This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field. 
650 0 |a Partial differential equations. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-13-3032-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09843 
919 |a 978-981-13-3032-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 276436  |d 276436