Operator Relations Characterizing Derivatives

This monograph develops an operator viewpoint for functional equations in classical function spaces of analysis, thus filling a void in the mathematical literature. Major constructions or operations in analysis are often characterized by some elementary properties, relations or equations which they...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: König, Hermann (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9783030002411
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618121159.0
007 cr nn 008mamaa
008 181003s2018 gw | s |||| 0|eng d
020 |a 9783030002411 
024 7 |a 10.1007/978-3-030-00241-1  |2 doi 
035 |a CVTIDW12328 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a König, Hermann.  |4 aut 
245 1 0 |a Operator Relations Characterizing Derivatives   |h [electronic resource] /  |c by Hermann König, Vitali Milman. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VI, 191 p.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a Introduction -- Regular Solutions of Some Functional Equations -- The Leibniz Rule -- The Chain Rule -- Stability and Rigidity of the Leibniz and the Chain Rules -- The Chain Rule Inequality and its Perturbations -- The Second-Order Leibniz rule -- Non-localization Results -- The Second-Order Chain Rule -- Bibliography -- Subject Index -- Author Index. 
516 |a text file PDF 
520 |a This monograph develops an operator viewpoint for functional equations in classical function spaces of analysis, thus filling a void in the mathematical literature. Major constructions or operations in analysis are often characterized by some elementary properties, relations or equations which they satisfy. The authors present recent results on the problem to what extent the derivative is characterized by equations such as the Leibniz rule or the Chain rule operator equation in C^k-spaces. By localization, these operator equations turn into specific functional equations which the authors then solve. The second derivative, Sturm-Liouville operators and the Laplacian motivate the study of certain "second-order" operator equations. Additionally, the authors determine the general solution of these operator equations under weak assumptions of non-degeneration. In their approach, operators are not required to be linear, and the authors also try to avoid continuity conditions. The Leibniz rule, the Chain rule and its extensions turn out to be stable under perturbations and relaxations of assumptions on the form of the operators. The results yield an algebraic understanding of first- and second-order differential operators. Because the authors have chosen to characterize the derivative by algebraic relations, the rich operator-type structure behind the fundamental notion of the derivative and its relatives in analysis is discovered and explored. The book does not require any specific knowledge of functional equations. All needed results are presented and proven and the book is addressed to a general mathematical audience. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Operator theory. 
650 0 |a Functions of real variables. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-030-00241-1  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09608 
919 |a 978-3-030-00241-1 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 276422  |d 276422