Gesture Recognition Principles, Techniques and Applications /

This book presents a thorough analysis of gestural data extracted from raw images and/or range data with an aim to recognize the gestures conveyed by the data. It covers image morphological analysis, type-2 fuzzy logic, neural networks and evolutionary computation for classification of gestural data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Konar, Amit (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Studies in Computational Intelligence, 724
Schlagworte:
ISBN:9783319622125
ISSN:1860-949X ;
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618121025.0
007 cr nn 008mamaa
008 170705s2018 gw | s |||| 0|eng d
020 |a 9783319622125 
024 7 |a 10.1007/978-3-319-62212-5  |2 doi 
035 |a CVTIDW09728 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Konar, Amit.  |4 aut 
245 1 0 |a Gesture Recognition  |h [electronic resource] :  |b Principles, Techniques and Applications /  |c by Amit Konar, Sriparna Saha. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVIII, 276 p. 99 illus., 73 illus. in color.  |b online resource. 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 724 
500 |a Engineering  
505 0 |a Introduction -- Radon Transform based Automatic Posture Recognition in Ballet Dance -- Fuzzy Image Matching Based Posture Recognition in Ballet Dance -- Gesture Driven Fuzzy Interface System For Car Racing Game -- Type-2 Fuzzy Classifier based Pathological Disorder Recognition -- Probabilistic Neural Network based Dance Gesture Recognition -- Differential Evolution based Dance Composition -- EEG-Gesture based Artificial Limb Movement for Rehabilitative Applications -- Conclusions and Future Directions -- Index. 
516 |a text file PDF 
520 |a This book presents a thorough analysis of gestural data extracted from raw images and/or range data with an aim to recognize the gestures conveyed by the data. It covers image morphological analysis, type-2 fuzzy logic, neural networks and evolutionary computation for classification of gestural data. The application areas include the recognition of primitive postures in ballet/classical Indian dances, detection of pathological disorders from gestural data of elderly people, controlling motion of cars in gesture-driven gaming and gesture-commanded robot control for people with neuro-motor disability. The book is unique in terms of its content, originality and lucid writing style. Primarily intended for graduate students and researchers in the field of electrical/computer engineering, the book will prove equally useful to computer hobbyists and professionals engaged in building firmware for human-computer interfaces. A prerequisite of high school level mathematics is sufficient to understand most of the chapters in the book. A basic background in image processing, although not mandatory, would be an added advantage for certain sections. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Pattern recognition. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-62212-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE07008 
919 |a 978-3-319-62212-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 276141  |d 276141