Galois Theory Through Exercises

This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois' the...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Brzeziński, Juliusz (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Undergraduate Mathematics Series,
Témata:
ISBN:9783319723266
ISSN:1615-2085
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618121004.0
007 cr nn 008mamaa
008 180321s2018 gw | s |||| 0|eng d
020 |a 9783319723266 
024 7 |a 10.1007/978-3-319-72326-6  |2 doi 
035 |a CVTIDW09597 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Brzeziński, Juliusz.  |4 aut 
245 1 0 |a Galois Theory Through Exercises  |h [electronic resource] /  |c by Juliusz Brzeziński. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVII, 293 p. 12 illus.  |b online resource. 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
500 |a Mathematics and Statistics  
505 0 |a 1 Solving algebraic equations -- 2 Field extensions -- 3 Polynomials and irreducibility -- 4 Algebraic extensions -- 5 Splitting fields -- 6 Automorphism groups of fields -- 7 Normal extensions -- 8 Separable extensions -- 9 Galois extensions -- 10 Cyclotomic extensions -- 11 Galois modules -- 12 Solvable groups -- 13 Solvability of equations -- 14 Geometric constructions -- 15 Computing Galois groups -- 16 Supplementary problems -- 17 Proofs of the theorems -- 18 Hints and answers -- 19 Examples and selected solutions -- Appendix: Groups, rings and fields -- References -- List of notations -- Index. 
516 |a text file PDF 
520 |a This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois' theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-72326-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06877 
919 |a 978-3-319-72326-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 276078  |d 276078